
1 (Practice 6) Vertex Buffer Objects
(VBOs)

In the previous practice we have seen how to draw a mesh with data on main
memory (arrays of vertices, normals and triangle index allocated with malloc()). With
large applications simulating in realtime worlds and hundreds of characters this
approach would be unreasonable. You will have to upload thousands of megabytes per
seconds to the GPU in order to draw your scene. Because the bus between GPU and CPU
has a limited bandwidth this may result in serious slowdowns.

OpenGL offers a solution to explicitly upload data on GPU and modify it on the fly.
This way data can be uploaded once and reused later without any memory transfer
costs. This mechanism is called buffer objects. Buffer objects will allow you to store
mesh informations, textures or other buffers on GPU and gives means to partially update
them.

The practice focus on vertex buffer objects (VBOs) which are used to store mesh
data. Although OpenGL function name can change between the buffer object types
(frame/pixel/vertex/... buffer objects) the logic stays pretty much the same:

• First you tell OpenGL to create the buffer object.
• Before using any function that modify the buffer you have to tell openGL which

buffer you are using by binding it.
• You allocate and copy data to the buffer object as you would with standard arrays

but using dedicated openGL functions.

A little example:

{
 GLfloat vertices[nb_vertices * 3];
 GLuint index [nb_faces * 3];
 // Init arrays of normals, vertices and index
 ...
 // Creates three VBOs and store their identifier in vboID
 GLuint vboId[2];
 glGenBuffers(2, vboId);

 // Bind the first vbo to work on it
 glBindBuffer(GL_ARRAY_BUFFER, vboId[0]);
 // Allocate memory on GPU and copy data on CPU from the array 'vertices'
 glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*nb_vertices*3, vertices,
GL_STATIC_DRAW);

 // Allocate and initialise memory of the second vbo storing triangle index
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboId[1]);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint)*nb_faces*3, GL_STATIC_DRAW);

 /*
 Drawing with VBOs
 */

 glEnableClientState (GL_VERTEX_ARRAY);

1

 // Tells OpenGl which VBO to use for the vertices when drawing
 glBindBuffer(GL_ARRAY_BUFFER, vboId[0]);
 // Instead of giving a pointer to the main memory we use NULL to use the VBO
 glVertexPointer(3, GL_FLOAT, 0, NULL/* <- We use VBO instead of an array*/);

 // Drawing with VBO of triangle index :
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboId[1]);
 glDrawElements(GL_TRIANGLES, nb_faces*3, GL_UNSIGNED_INT, NULL);

 glDisableClientState (GL_VERTEX_ARRAY);
 // Binding the VBO of identifier 0 tells OpenGL to unbind the VBOs
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 // Deleting the VBOs from OpenGL memory
 glDeleteBuffers(2, vboId);
}

One thing to be aware of: VBO of type GL_ARRAY_BUFFER are VBO used to store
vertex attributes (position, color, normals, tangents etc.)

VBO of type GL_ELEMENT_ARRAY_BUFFER is used to store face index (triangle index,
quad index, line index etc.)

The enum field GL_STATIC_DRAW is an hint to OpenGL to tell how you plane to use
the VBO. In this case GL_STATIC_DRAW tells that you will upload once the data and
draw it many times. They are other hints, for instance to tell the mesh will be changed
many time. You can look at the documentation.

✔ Use VBOs instead of arrays to draw the mesh. You will need to add some field
to store the VBOs ids in the mesh structure.

2

	1 (Practice 6) Vertex Buffer Objects (VBOs)

