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ABSTRACT

In character animation achieving realistic deformations of the skin is a challenging task.
Geometric skinning techniques, such as smooth blending or dual-quaternions, are very
popular for their high performance but fail to produce convincing deformations. They
look too soft compared to human skin deformation at a rigid bone joint. In addition ad-
vanced effects such as skin contacts or bulges are not taken into account. Other methods
make use of physical simulation or volume control to better capture the skin behavior, yet
they cannot deliver real-time feedback. We developed a novel skinning framework called
implicit skinning. Our method produces visually plausible deformations in real-time by
handling realistic skin contacts and bulges between limbs. Implicit skinning exploits the
ability of implicit surfaces to be robustly combined as well as their efficient collision de-
tection. By approximating the mesh by a set of implicit surfaces, we are able to guide the
deformation of a mesh character. we can combine the implicit surfaces in real-time, and
use the final implicit surface to adjust the position of mesh vertices at each animation step.
Since collision detection is very efficient using implicit surfaces we achieve skin contacts
between limbs at interactive to real-time frame rates. In this thesis we present the com-
plete implicit skinning framework, that is, the conversion of a mesh character to implicit
surfaces, the composition operators and the mesh deformation algorithm on top of the im-
plicit surface. Two deformation algorithms are studied: a fast history dependent algorithm
which acts as a post process on top of dual-quaternions skinning and a slower yet more
robust history dependent algorithm.
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ABSTRACT (French)

Nous présentons une nouvelle approche pour l’animation de personnages de synthèse représen-
tés par des maillages et un squelette. Nous concentrons nos efforts sur la correction des
déformations non réalistes des articulations. En effet, les techniques d’animation standard
présentent un aspect bien trop mou pour reproduire les déformations des articulations,
ce qui rend ses approches peu crédibles. Nombre de systèmes d’animation en temps réel
ont tenté de résoudre ce problème connu sans jamais y parvenir totalement, ou requièrent
en effort considérable de la part de l’utilisateur. Nous introduisons un nouveau système
d’animation appelé implicit skinning. Ce dernier est capable de produire en temps réel
des déformations à l’aspect plus rigide. De plus, implicit skinning introduit des effets plus
avancés comme la simulation du contact de la peau entre les membres du personnage, mais
aussi des effets de gonflement de la peau et de gonflement musculaire. Notre proposition
part de l’observation que les déformations des articulations sont facilement représenta-
bles par l’intermédiaire de surfaces implicites, et ce, avec une gestion des déformations
rigides et des collisions. Nous tirons donc parti des avantages des deux représentations
que sont les maillages et les surfaces implicites, en ajustant l’animation d’un maillage par
une technique basée sur squelette sur sa représentation implicite. Nous évitons ainsi les dif-
ficultés de visualisation liées aux surfaces implicites tout en gardant des temps d’animation
interactifs jusqu’au temps réel. Dans cette thèse nous explorons deux grandes familles
d’algorithmes de déformation: un algorithme rapide dit "indépendant de l’historique" qui
a pour avantage de s’intégrer facilement en tant que post-traitement de n’importe quel sys-
tème d’animation géométrique; et enfin un algorithme plus lent mais plus stable dit "dépen-
dant de l’historique".
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Chapter 1

Introduction

(a) (b) (c) (d)

Figure 1.1: Some examples of popular application fields for character animation such as
(a) games, crowd simulation, (b,c) movies (d) dressing of virtual avatars. (Source: Hitman
absolution I/O interactive, Frozen Walt Disney, The incredible Hulk Universal Picture,
Marvelous designer CLO Virtual Fashion)

1.1 Context

In today’s digital world, demands for tri-dimensional content is rapidly growing. The en-
tertainment industry (movie, commercials etc.) need to design virtual worlds in which an-
imated characters and creatures are ubiquitous. In this context, physical accuracy is rarely
a requirement and the goal is to achieve visually plausible animations. Instead of a realistic
physical simulation, the artist often prefers to have a swift and intuitive control over the
animation and deformation of the model. This makes it easier to emphasis certain elements
of their work, for instance to better underline a bicep inflation even at the expense of vol-
ume preservation. In addition, the user usually has to interact with the virtual world, this
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means the simulation must run in real-time. When user interactions is not required, speed
remains a concern since it impacts the ability of the artist to produce easily and rapidly
character animations. Therefore, real-time feedback and automation of the character’s skin
deformation is always worthwhile.

(a)

(b) Linear blending (c) Our with contact (d) Our with bulge (e) Real finger

Figure 1.2: Deformations with our method: implicit skinning [VBG+13]. (a) Real-time
animation of the index finger of a hand model composed of 31750 vertices. Two poses are
shown in each column: (b) standard smooth skinning with linear blending at 95 frames
per second (fps), (c) our method which compensates the loss of volume on top of joints
and models contact in the fold at 37 fps, (d) implicit skinning with an additional bulge
mimicking tissues inflation at 35 fps, and (e) a picture of a real bent finger.

This research focuses on one of the many challenges when animating a virtual charac-
ter: the production of plausible skin deformations at joints, this process is called skinning.
We introduce a novel framework for character skinning called implicit skinning. The sys-
tem performs from interactive to real-time frame rates. We enhance the look of traditional
skinning algorithm by simulating skin folds and skin contacts, for instance inside the char-
acter’s joint when a limb is bent (e.g. finger joints Figure 1.2), or between colliding body
parts such as an arm against the torso. We also handle more advanced effects such as skin
bulges at joints, muscles bulges or even skin elasticity (i.e. the ability for the skin to stretch
and squash over the character).

Among the many [MTLT88, HYC+05, FOKgM07a, DSP06, YSZ06, JS11, JBK+12] ap-
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proaches to deform mesh-based characters, linear blend skinning [MTLT88] (LBS) is a
prevalent technique important to the research presented here. The technique consist in
associating different parts of a mesh to a skeleton which drives the motion of the character.
A skeleton is defined by a succession of segments (the bones) linked together by joints. The
skeleton can be seen as a graph (usually a tree hierarchy), where bones are the arcs of the
graph and joints its nodes. The skeleton is set in motion by rotating bones around their
joint. With LBS the mesh is deformed according to skinning weights which associate each
bone with a set of the mesh vertices (Figure 2.1). As detailed later (Chapter 2), skinning
weights enable the production of smooth deformations of the mesh at joints. Note the de-
formation is always computed from an initial position of the skeleton (called the rest pose or
bind pose). This type of algorithm is said to be history independent: it guarantees the same
result for a given skeleton’s pose, regardless of any other previous parameters in time.

Linear blend skinning is the De facto standard in the entertainment industry. Especially
for applications such as video games, or stylized animated movies. In these areas the trade-
off between visual realism and speed of user interactions, strongly leans towards speed.
LBS requires less user interactions and is less computationally expensive than other more
realistic methods. This explains its popularity in games, where it can animate hundreds
of characters in real-time using modern workstations. But the technique suffers from the
following well-known drawbacks: the deformation looks mushy, produces loss of volume
at joints, and geometry can self-intersects. For instance, the animation of an elbow is more
similar to a bent rubber pipe (Figure 1.3 (a)) than a true human joint. Human joints are
made of bones and nearly incompressible soft tissues which result in a more rigid looking
deformation. Figure 1.3 (b) further illustrates the loss of volume problem, we can see the
twisting motion of the forearm collapses every mesh’s vertices onto a single point. In addi-
tion to these problems, no collision detection is performed. This means self-intersections
of the mesh will arise for any large movements of the bones. When geometry self-intersects
subsequent simulations steps such as for clothing [BWK03] or anything that requires a clear
definition of the inside and outside of the character, are more difficult to compute.

When more realism is needed, example-based methods [MG03] and shape interpolation
schemes [LCF00, WSLG07] enable real-time animation, however they greatly increase the
amount of necessary user input. For large budget projects, the movie industry often relies
on shape interpolation methods since they allow photo-realistic deformations. In this type
of framework, the user deforms the character with a standard skinning method, and then
re-sculpt the character in each of the poses that are considered troublesome. This process
gives a lot of freedom to the artist and the end result strongly reflects the artist’s skill and
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(a) (b)

Figure 1.3: (a) Linear blending results in a rubbery appearance of the elbow (due to loss of
volume). (b) the well known candy wrapper artifact for screw motions. [LCF00]

perseverance. Muscle bulges or details as fine as veins dilatation or skin wrinkles can be
reproduced but at the cost of a very long character remodeling.

Lastly, physical simulation can also produce appealing deformations [NTH01,TSIF05],
however the amount of computation makes it only suitable for off-line rendering. In addi-
tion, muscles and rigid bones of realistic shapes need to be predefined from medical data or
by the user. Intermediate methods such as elasticity skinning [MZS+11] don’t need such
data. This method enables the computation of skin squash and stretch by solving the un-
derlying physical equations of elastic materials. Despite its robustness and visual quality,
this type of approach still requires several seconds per animation frame.

1.2 Contributions

Our implicit skinning framework provides the artist with a skinning technique visually
better than a traditional smooth skinning while keeping real-time performance and mini-
mizing user input. To improve the visual quality we automatically produce self-penetration
free deformations when skin folds, and preserve the aspect of a rigid bone near joints (Fig-
ure 1.2(c)). We are also able to generate subtle effects such as the skin bulging at joints
(Figure 1.2(d)), muscle bulges and skin elasticity with simple parameters.

Technically, the novelty of implicit skinning lies in the use of implicit surfaces together
with an animated mesh to achieve its skinning. Instead of relying on volume discretization
and mesh-based collision, we use implicit surfaces to model the volume of the mesh and
compute its deformation. The key idea is to approximate the individual mesh parts attached
to each skeleton bone using implicit surfaces. By doing this we can exploit their ability to
be combined using blending operators (such as union, gradient-based blending or gradient-
based bulge-in-contact [GBC+13]). These operators will enable us to model plausible skin
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deformations at joints during motion, with timings far superiors to traditional mesh-based
approaches.

In this research we will limit our scope to skinning methods. Our state of the art analysis
(Chapter 2) will not include other shape deformation methods [Sor06,SA07]which are best
used to quickly change the pose of a mesh. Readers interested to delve even further into the
realm of character skinning can refer to the corresponding Siggraph 2014 course [JDKL14].
Chapter 3 will lay the technical background on 3D scalar fields and implicit surfaces which
is necessary to understand our contributions. We will describe two versions of the implicit
skinning framework (Chapter 4): a history independent algorithm lying on top of standard
geometric skinning allowing a straightforward implementation within standard animation
pipeline, and a more robust history dependent version allowing more advanced effects such
as skin elasticity.
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Chapter 2

State of the art

2.1 Geometric skinning

Geometric skinning refers to a class of skinning methods which rely on a coarse representa-
tion of the character’s skeleton. Most of the time this skeleton is represented with a succes-
sion of line segments or in more advanced systems curves. The goal is to deform the mesh
by only relying on the skeleton joint rotations. In other words, geometric skinning systems
blindly deform the mesh according to a skeleton’s pose. These approaches offer visually
plausible results but mainly focus on extremely high performance. Geometric skinning is
usually seen in games and virtual reality systems where Linear blend skinning [MTLT88]
is by far the most popular method.

2.1.1 Linear blend skinning

(a) (b)

Figure 2.1: A cylinder colored according to the influence of the first bone (a.k.a skinning
weights). Red is the maximal influence and yellow is no influence.

Although it has never been formally introduced in the literature, linear blending was
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first demonstrated to compute the deformation of an animated hand [MTLT88]. Figure 2.1
gives an example of linear blending deformation with a cylinder. To achieve such deforma-
tions one needs to define the influence of each bone over the mesh (figure 2.1 (a)). When a
vertex is influenced by only one bone it will exactly follow the transformation of this bone
(this is the case of fully red vertices in figure 2.1). These influences can overlap, for instance
vertices in orange are influenced by more than one bone and follow a blended transforma-
tion of related bones. Formally each bone is associated with a scalar function wi :R2→R
defined over the surface of the mesh. The values of the function are specified for each vertex
and form a set of scalar weights for each bone. The sets wi are called skinning weights and
may overlap to produce a smooth deformation at a joint. Skinning weights usually range
from [0,1] and are used to interpolate the bones’ transformations. The formula to deform
the mesh vertices is straightforward:

p̄=
n
∑

i=1

wi (p)Tip (2.1)

Here p is a mesh’s vertex in rest pose, p̄ a vertex after deformation. n defines the num-
ber of bones, wi is a scalar weight associated to the ith bone for each vertex p and Ti the
transformation matrix of a bone from its rest pose. Usually the weights wi are normal-
ized to sum to one and matrices Ti represent rigid transformations (i.e. solely a translation
and/or rotation).

While the technique produces smooth deformations at joints for very low computa-
tional cost, it has several well-studied drawbacks [MG03, KCvO08, LCF00, BWK03]:

• The loss of volume near a joint that bends. It results in a very rubbery looking skin
deformation at this joint.

• Mesh self-intersection for large movements. Since there is no collision detection this
cannot be avoided.

The first problem arises from the linear combination of the matrices (
∑

wi Ti ). Even
though the matrices Ti represent rigid transformations, this does not guarantee that their
combination results in an another rigid transformation [Ale02]. It is not unusual that the
linear combination of matrices returns a matrix with a scaling factor, hence the volume
shrinkage.

A simplified example can help to understand this phenomenon. Consider a cylinder
mesh and two bones defined along its length (cf. figure 2.2 (a)). The vertex v in the middle
has the weights w1 = 0.5 and w2 = 0.5 for each bone. On the figures 2.2 (b) and (c) the
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vertices v1 and v2 are the results of the transformations T1 and T2 applied to v. As defined
by the LBS equation 2.4, the linear combination of v1 and v2 results in v̄ = 0.5v1+ 0.5v2

which is very close to the joint.

v

21

v
1

v
2

v

(a) (b)

v1v2
v

(c)

Figure 2.2: (a) We consider both bones numbered 1 and 2 where the bone 2 is set in motion
in (b) and (c) while number 1 stays still. We can see the new position v̄ of v between
the two bones. (b) When the bone 2 does a twisting movement its associated vertex v2 is
in the opposite direction of v1. Their blending will collapse the mesh. (c) When bone 2
rotates towards bone 1 their blending result in a loss of volume, hence the soft aspect of the
deformation.

This result is of course not desired when trying to animate characters made of rigid
bone joints. Moreover, trying to correct this problem by tweaking the skinning weights
can be extremely frustrating for the user. First, skinning weights don’t have a clear physical
interpretation, it is hard for the user to conjecture what weights will achieve the desired
result, unless he is aware of the underlying computation. Secondly, the user cannot avoid
the loss of volume by only adjusting the skinning weights wi . Indeed, only a limited set of
poses can be reached by changing the weights. In our example the deformed vertex v̄ can
only travel along the line formed by v1 and v2. With a limited number of bones the linear
system cannot express every position of the ambient space. To increase the pose space the
user can resort to adding more joints: a tedious and highly unintuitive process.

The second problem of self-intersection is demonstrated in figure 2.3. Such a defect
will make subsequent simulation harder to produce. For instance a clothing algorithm
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will have to take this artifact into account which will make it more computationally ex-
pensive [BWK03]. No collision detection ultimately means that skin contacts between the
different limbs and the resulting bulges are not simulated.

Figure 2.3: Large bending of a cylinder mesh produce a self-intersection.

Despite all these drawbacks linear blend skinning is still very popular. It is one of the
approach which requires the least user input, especially with the advent of automatic skin-
ning weights techniques [BP07,JBPS11]. In addition the method is very straightforward to
implement which explains its integration into numerous 3D engines and animation pack-
ages. Above all it is extremely fast since the operation shown in equation 2.4 can be par-
allelized per vertex. Implementation on graphics card processors are very common using
shader programs. Hundreds of characters can be animated in real-time this way on modern
workstations.

2.1.1.1 Lighting

When deforming the geometry, we must also consider how to update its normals. This
computation is important as it affects the accuracy of the lighting, and therefore the final
aspect of the model. A mathematically straightforward way to do so, is to interpret the LBS
equation 2.4 as a deformation map φ(x, y, z) :R3→R3. From there, we can transform the
normals using the 3× 3 Jacobian matrix J(φ(x, y, z)):

n̄= J−T
i n (2.2)

The exact formulation for LBS is reported by Merry & al [MMG06b]. Unfortunately
this approach is computationally expensive and prone to numerical instabilities [TPSH14],
therefore a very popular practice is to approximate Ji (φ) by

∑n
i=1 wiTi . While inexpensive

and straightforward to implement, this approximation makes the assumption that the de-
formation is locally rigid around the i th vertex. This is rarely the case and can result in
lighting artefacts. To mitigate this, one can use a more accurate approximation taking into



10

account the skinning weights variations and therefore the non-rigid deformation of the
surface [TPSH14]

As a side note, if transforming normals is desirable in high performance applications,
it can be tedious to formulate a closed form solution for complex skinning algorithms.
In addition, pipelines with many deformation algorithms will be harder to maintain and
transforming the normals at each stage may not even be the most efficient computation. In
this case, we can compute normals directly from the geometry once every deformation is
applied, it also has the advantage to work with any deformation.

2.1.2 Alternative blends

Within geometric skinning techniques we can distinguish a class of methods that tries to
improve linear blend skinning by seeking alternative formulations to blend the bone trans-
formations (cf. equation 2.4). As explained earlier linear blending can introduce a scaling
factor. If the result of the blending were to guarantee the production of rigid transforma-
tions, then the loss of volume would be reduced greatly. This is the idea put forward by
several researches [KCvO08,Ale02,Kv05]. Instead of doing a linear interpolation between
the various positions of the vertices, we can interpolate their angle of rotation.

P1

P2

Pm

P2

P1
P'm

Figure 2.4: Left a linear interpolation produce a vertex p̄m not lying on the arc circle which
goes through p1 and p2. Right the problem is solved by interpolating the angles.

Among alternative blends approache dual quaternion skinning is the fastest method
with the lowest amount of artefacts we know to this date. Dual quaternion skinning con-
sists of expressing the bone transformations using dual quaternions [KCvO08] instead of
matrices. The advantage being that blending of dual quaternions is guaranteed to result in
a rigid transformation. We will detail dual quaternions in the next section.

Other methods rely on slightly more complex skinning equations, for instance it is pos-
sible to treat the influence of scale, twist and bend motions differently [JS11]. Rigid skele-
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ton can also be enhanced using curved bones to produce smoother deformations [FOKgM07b,
YSZ06]

2.1.2.1 Dual quaternions skinning

The dual quaternions skinning [KCvO08] (DQS) speed is in the same order of magnitude as
LBS and is just slightly slower. In this method, only the way transformations are expressed
is changed and matrices become dual quaternions, this means its integration into linear
blend skinning pipelines is straightforward. For these reasons dual quaternions skinning
tends to become as popular as LBS. For instance we can find it in professional packages
such as Blender or Maya. DQS approach is very similar to LBS and also relies on skinning
weights, however, the blend

∑n
i=1 wi (p) Ti is redefined to work with dual quaternions:

¯̇q=
∑n

i=1 wi (p) q̇i

‖
∑n

i=1 wi (p) q̇i‖
(2.3)

Instead of blending matrices we blend dual quaternions. Each dual quaternion q̇i rep-
resents a bone transformation Ti without scale and shear. The q̇i are averaged using the
influence weights wi , the sum is then normalized. Details to perform dual quaternion ad-
ditions, multiplications etc. can be found in Kavan & al [KCvO08]. The final result is a
dual quaternion¯̇q expressing the rigid transformation to be applied to the corresponding
vertex:

p̄= transform
� ¯̇q,p

�

(2.4)

Here transform is a simple procedure extracting rotation and translation from¯̇q and
applying it to p. This procedure is very similar to the one used with standard quaternions
except for the translation handling.

To be integrated in a linear blend skinning pipeline each transformation matrix Ti needs
to be converted to its dual quaternion q̇i counterpart and the procedure handling blending
re-written to use dual quaternions blending instead. This method gives encouraging results,
it has a runtime speed close to LBS and solves its biggest problem: the loss of volume (c.f.
figure 2.5).

Since dual quaternions skinning is quite similar to LBS, it shares LBS’s drawbacks as
well. For instance, the untuitive skinning weights editing or the soft deformation which,
although better, still looks too flexible to mimic semi-rigid bone joints. Finally no other
advanced effects is introduced such as skin contacts or muscle bulge. Dual quaternion skin-
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(a) (b) (c) (d)

Figure 2.5: (a) and (c) linear blending. (b) and (d) dual quaternions. Source: [KCvO08]

ning also introduce its own artefacts and limitation:

• The skin flips when a joint’s rotation exceeds an angle of 180°.

• The skin exhibit a bulge around joints.

• Handling bone scale is not straightforward

We can observe a flip of the mesh vertices configuration when a rotation exceed an angle
of 180°. If a bone goes from 179°to 180°, the position of the vertices will change dramati-
cally. This is because the interpolation between multiple rotations will choose the shortest
rotation path and the number of turns are not taken into account. As a result the animation
will appear to be discontinuous around these angles. Fortunately, such scenario is pretty
unfrequent when animating characters and creatures, a rotation of more than 180°is rarely
considered to be appropriate or natural.

Dual quaternion skinning also exhibits a bulge around joints. Young Beom and Jung
Hyun [KH14] expose this phenomenon by showing the path vertices follow for different
skinning weights:

Figure 2.6 shows the case of only two bones influencing the skin. We observe a vertex
is interpolated around a sphere whose center is the joint position and its radius the dis-
tance between the vertex and the joint position. In this configuration, the bulge artefact is
inevitable as soon as a vertex gets farther from the joint. The user can reduce the bulge arte-
fact by reducing the influence area very close to the joint. The less widespread the skinning
weights are over the mesh, the less prominent the bulge will be (Figure 2.7).

It is also possible to completely eliminate the bulge artefact using a simple re-projection
as post-process to DQS [KH14]. The procedure only relies on geometric considerations
between the vertex position and bone or joint positions. For each vertex in the rest pose,
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(a) (b) (c)

Figure 2.6: (a) rest pose. (b) If we change the skinning weights of v3, we see its various
instances are located on the surface of the sphere centered around the joint. (c) Vertices
farther from the joint lies on a sphere with a larger radius. Source: [KH14]

Figure 2.7: Impact of the skinning weights on DQS deformation. From left to right the
skinning weights overlaps more and more. The bigger the overlapping region is, the more
prominent the bulge artefact is.

we can store its distance from the nearest bone or joint. While the mesh is animated, every
vertex not located in the fold of the joint is re-projected to its original distance. The runtime
procedure is fairly inexpensive as it only involves a few operations per vertex: a vertex
transformation, a bone to vertex distance computation and a couple arithmetic operations.
Results are shown figure 2.8

Finally, because dual quaternion transformations are restricted to rigid transformations,
handling scale is not straightforward. The authors propose to circumvent this problem by
decomposing the skinning in two passes: one for the rigid transformations, another for the
scale. Unfortunately, Gene et al. showed unwanted deformations may arise with this ap-
proach, especially when different scale factors are interacting with each other in the bone
hierarchy [LLS+13]. They propose a more robust algorithm by taking into account the
relationship between joints, this result in the concatenation of the joint transformations
for the whole skeleton hierarchy. This fixes artefacts related to scale, and adds a small com-
putational overhead compared to LBS.

To summarize dual quaternion skinning is slightly more complex than LBS in terms
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Figure 2.8: (Top row) Dual quaternion skinning exhibits the bulge artefact. (Bottom row)
Young Beom and Jung Hyun [KH14]method correct the bulge by re-projecting the promi-
nent vertices. Source: [KH14].

of implementation and produces its own artefacts. Despite those inconveniences, DQS is
often considered to be a very good alternative over LBS since its artefacts are less trouble-
some or can be avoided using reasonable additional procedures. In addition DQS runtime
performance is very similar to LBS.

2.1.2.2 Twisting and stretching

Dual quaternion skinning solves the mesh shrinkage when we twist bones, and twisting
does not exhibit the bulge artefact which only arises when the joints are bent. But there
are other issues when twisting a bone that are not directly addressed by DQS.

By design, DQS relies on a single set of skinning weights per bone. Usually the sets over-
lap around joints, this enables one to localize the smooth deformation in between limbs.
While it is desirable to have such localized deformation for bending motions, this is not
always the case for twisting motions.

Figure 2.9 (a) illustrates the problem, the elbow is twisted with a single joint which
results in an unnatural deformation. Indeed, when the elbow twists, one usually expects
the forearm to progressively twist along its entire length. A common workaround is to
divide the bone into a chain of bones (figure 2.9 (b)). Many set of skinning weights will
overlap along the chain, this enables a large twist to be broken down into small increments
and to distribute the deformation.

More bones means more sets of skinning weights, which also means more areas where
those sets overlap. Ultimately, this will slow down the computation. Numerous vertices
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(a) (b)

Figure 2.9: Deformation with dual quaternion skinning, (a) arm twist at a 45°angle using
a single joint. (b) the same twist looks more natural if the rotation is distributed along a
chain of bones.

will be influenced by more than two bones, this increases the number of dual quaternions
blend per vertex. In addition, too many skinning weight sets may be tedious to handle
by the user, especially if their editing is required. Finally, more bones makes it harder to
animate the skeleton, and more procedures to automate the skeleton’s kinematic will be
needed to ease this burden.

Despite these issues, chain of bones are popular since this trick does not require any
changes of the underlying skinning algorithm. It is not unusual to see softwares provide
tools for automatic bone subdivision. Yet, one problem remains unsolved, which is stretch-
ing bones without deforming the geometry beyond the end points. Figure 2.10 demon-
strates this issue:

Original

LBS/DQS/MWE

STBS

Figure 2.10: A cigar shape deformed with a single bone. With standard geometric skinning
such as LBS or DQS there is a single skinning weight set (here equal to 1 everywhere ) which
affects the whole shape. As a result the tips of the cigar are deformed past the end points.
The stretchable and twist-able skinning approach (STBS [JS11]) avoids this by introducing
additional skinning weights sets for each end points. Source: [JS11]
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Although the figure presents a simple case, the same artefacts are observable for any
joint. As stated earlier LBS or DQS use a single skinning weight set per bone. These
weights are usually greater than zero well beyond the end points of the bone, this allows
the sets to overlap at joints and produce the smooth deformation. As a result, any scale
factor will be applied beyond the end point of the bones.

Limitations related to bone twists and bends are found in every geometric skinning tech-
niques relying on a single set of skinning weights per bone. An approach called stretchable
and twist-able bones (STBS [JS11]) suggests to use two sets of skinning weights per bone
wi and ei . The first set wi is called bone weights. It is the usual skinning weights, mostly
constant along the bone and overlapping around joints (Figure 2.1). The second set ei is
called endpoint weights. This time, the skinning weights overlap along the bone and are
constant beyond the endpoints (Figure 2.11).

Figure 2.11: Display the endpoints skinning weights ei used in STBS. Red means 1 and
white 0. Notice how the weights are constant beyond the endpoints but varies along the
bones’ length (arm and forearm). Source: [JS11]

One can decompose the skinning equation 2.4 to express stretch and twist separately
from the bending transformation, this makes it possible to associate each type of transfor-
mation to different skinning weight set. Here we associate ei to twist and stretch transfor-
mations while bending relies on wi . This enables twist or stretch to be properly distributed
along the bone’s length. Indeed ei only varies along the bone’s length enabling to easily in-
terpolate user-defined twist and stretch parameters.

Although STBS fixes twist and stretch artefacts it come at the price of an additional set
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of skinning weights. When automatically generated [BP07, JBPS11] this is not a big issue
but if fine tuning is required this makes the skinning interface slightly more complex.

2.1.3 Curved skeletons

Figure 2.12: Tentacle object deformed using the software Blender. A Bezier curve with
only three control points produces interesting deformations impossible to achieve with
geometric skinning and the same amount of joints.

Sometimes rigid skeletons are not suitable to animate and deform soft and elongated
limbs such as a cat’s tail or an octopus’ tentacle. Here again, we can make use of chains
of bones to obtain smooth deformations. But as stated earlier, this is not ideal: chains of
bones can be difficult to animate, the deformation quality depends on the number of bones
and more bones increase the computation cost.

A good alternative is to use parametric curves ci :R→R3 such as splines [FOKgM07b,
YSZ06] or Bézier curves (Figure 2.13), they offer a good control of the object’s shape and
curvature using a few control points. In addition curve skinning is extremely efficient and
is just a bit slower than LBS by a few fps, provided that the number of control points are
restricted and the curve discretized before its evaluation.

With tentacle like objects the goal is to produce a smooth deformation, therefore smooth
and continuous curves seem to be more appropriate than chains of bones. While it may
seem unrelated to the deformation of human looking joints, curves are interesting tools for
body parts such as the spine, neck or forearms. Besides, a lot of skinning algorithms are
also used for creatures where tails and tentacles are not uncommon.

Technically, to deform an object with curves, the first step is to bind the curves ci to the
mesh. Similar to rigid skeletons, a curve needs to associate to each vertex in rest pose a scalar
weight. These weights represent the curve’s parameter t (p) ∈ R. Given the parameter t
one can compute the Frenet frame Fi ∈R4×4 at the point ci (t ) and express a vertex position
p relative to Fi which makes it easy to get the deformed vertex using the animated Frenet
frame F̄i :



18

p̄=
n
∑

i=1

wi (p) F̄i (t (p)) F−1
i (t (p)) p (2.5)

Here we can handle multiple curves by doing a linear blending of the deformed vertex
position for each curve. This blending relies on skinning weights wi (p) similar to the ones
used for rigid skeletons. It is also possible to blend the deformed positions of a LBS or
DQS along with vertices deformed by some curves.

Figure 2.13: Associated weights to blend the deformation of each spline. Each spline
is associated to a colour which is averaged according to the vertex skinning weights.
Source: [FOKgM07b]

Skinning weights for curves can make use of automatic methods used for rigid skele-
tons such as the heat diffusion approach [BP07]. A more straightforward way to compute
those weights is probably to choose the closest curve point ci (t ) from the vertex position
p and associate the parameter t to this vertex. The closest distance can be pre-computed
numerically and gives satisfying results for objects with cylindrical silhouettes has shown
by Forstmann & al [FOKgM07b]. Twist deformations can be driven by the t parameter
to interpolate twisting angles defined at the end points of the curve.

(a) (b)

Figure 2.14: (a) Twist and bend using a single spline and three control points,
source: [FOKgM07b]. (b) Elbow bend with LBS on the left and a three control points
spline on the right, source: [YSZ06].
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Contrary to a rigid bone with a pivot point aligned with joints, splines are placed along
the joint, this allows very smooth deformations (Figure 2.14). While results are interesting
it produces unconvincing deformations when a human limb is bent. On the other hand
twist deformations can be used for limbs like the forearms.

It is worth noting when only the twist is exploited the approach is identical to the STBS
method. In this case the STBS’ weights ei are equivalent to the curve parameter t . In the
end curved skeleton show their true strength when used for spines or organic appendices.

2.2 Skinning weights

Figure 2.15: Semi-automatic skinning weights using envelopes. Each bone defines its in-
fluence according to its envelope which the user manually adjust. At the intersection of
several envelopes the influence will be mixed.

The skinning methods previously discussed rely on skinning weights, their properties di-
rectly impacts the final deformation, thus, it is crucial to understand skinning weights to
obtain good skinning results.

Artist used to manually edit skinning weights with the help of tools such as: envelopes
(figure 2.15), weight painting or even editing weight values vertex by vertex!

In addition to being extremely tedious, it is very difficult for the artist to obtain the
desired shape. As stated earlier, given a skeleton pose, a geometric skinning cannot produce
every possible shape. The artist can lose a considerable amount of time tweaking skinning
weights in some hope to model a shape, which is in fact unreachable using the current
geometric skinning. To add further confusion, skinning weights have no clear physical
meaning. The only insight the user has is that overlapping weights define soft areas.

It is possible to directly edit the shape of the model and infer the skinning weights [MTG03].
Unfortunately while the artist corrects a certain pose the system can break other poses, this
makes the approach impractical.
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Recent work showed how to compute skinning weights automatically [WSLG07,BP07,
JBPS11, DdL14, JWS12]. This considerably speeds up the work of the artist. Automatic
skinning weights produce a first draft which the user can tune up afterwards if needed.

In order to produce pleasing deformations automatic skinning weights must respect
certain properties. Perhaps the most obvious is the smoothness of the weight functions
wi (p) : R2 → R since C 0 function will result in C 0 deformation, C 1 in C 1 deformations
etc. In addition, the way wi decays as we go away from the bone also plays an important
role. In the previous section 2.1.2.1 and figure 2.7 we show different skinning weights with
fast to slow decay (left to right).

Figure 2.16: LBS applied to a 2D character, instead of bones the transformation matrices
Ti are manipulated through point handles. When negative skinning weights are defined (in
blue), the head moves in the opposite direction to the prescribed translation that stretches
the arm. When legs are stretched the head is compressed since the weights are not null
(local maximum). source: [JBPS11].

Previous work highlighted other important properties to produce well behaved skin-
ning deformation [JBPS11, JWS12].

Non-negativity: Negative weights are not intuitive since regions of the mesh with neg-
ative weights move in the opposite direction to the prescribed transformation (Fig. 2.16).

Locality and sparsity: Each handle (bones or points) should only influence locally the
shape of the model (Figure 2.18).

No local maxima: Weight functions wi should attain their global maximum (i.e., value
of 1) on the handle and should have no other local maxima. In other words, wi must
decay monotonically to ensure no undesired influence happen far away from the handle
(Figure 2.16)

Shape-awareness: Informally, shape-awareness means the correspondence between the
bones and the influenced areas of the mesh is intuitive. For instance, the arm’s bone should
influence the arm geometry but not the nearby torso geometry. This means skinning
weights wi should decay according to the geodesic distance inside the volume of the model.
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(Figure 2.17)

Figure 2.17: Left mesh in rest pose, middle mesh stretched with LBS and skinning weights
agnostic to the shape (Euclidean distance), finally right mesh deformed wit shape-aware
skinning weights. source: [JS11].

While automatic skinning weights produce very nice results it can be difficult to com-
pute them on arbitrary geometries. Non-watertight meshes and self-intersections are not
uncommon, handling such cases ease the work of the animator. Olivier Dionne et al.
use a sparse voxelisation of the mesh models [DdL14]. This enables computing for each
bone an approximate geodesic distance inside the volume of the mesh. The distance can be
remapped to produce the desired skinning weights. This gives the opportunity to the user
to edit the speed of decay of wi manually. For instance one can wish to further localize
the skinning weights in the shoulder area (Figure 2.17). This area is known to be especially
difficult to handle, even with automatic skinning weights respecting the above properties.
To give the user the opportunity to reduce the influence of a joint with a single parameter
is a great advantage.

Automatic skinning weights now enables geometric skinning algorithms to fully reach
their potential. They produce animations free of major artefacts without any user editing.
The remaining lack of realism is directly linked to the geometric skinning itself and the
number of bones used. When it comes to advanced automatic skinning weights, the major
issue that remains is the computation time. For instance, weights generated with sparse
voxelisation [DdL14] take a few seconds to compute. This prevents to interactively move
the joints, this is detrimental to design real-time user interface allowing skinning weights to
be fine tuned. With the increasing complexity of human or creature characters being able
to set rigid parts, soft parts and other parameters manually is higly desirable.
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(a) (b) (c)

Figure 2.18: How skinning weights locality impacts DQS deformations. When the influ-
ence of skinning weights is too widespread ((a) top row) it results in an unrealistic bulge
(b). One must reduce the skinning weight influence around the shoulder ((a) bottom row)
to obtain a more realistic deformation (c). Source: [KS12].
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2.3 Example-based approaches

Example-based techniques [LCF00, KJP02, WSLG07, WP02, MMG06a, MG03, KMD+07]
are ideal for application that demands:

• A high level of realism.

• A lot of freedom on the user side.

• Interactive performance.

The method aims to adjust the deformation automatically in order to match a set of
example poses. While animating, examples are interpolated to produce realistic transitions
for poses that are not in the set. The examples can be produced manually by the user, this
consists of sculpting the character pose into the desired shape. A long and tedious process,
which however enables the user to control the exact shape of the character. Alternatively
the examples can be computed by an off-line system automatically (e.g muscle simulation).
In this case, heavy animation systems can be used as input of an example-based method
enabling to speed up the animation and give an interactive preview of the deformation.

We will distinguish two kind of approaches: those that adjust skinning weights to match
the set of examples, and those that work directly on the vertex positions. To summarize, the
first approach will often use some variations of linear blending and increase its degrees of
freedom while keeping real-time performance. The second will store displacement vectors
for each pose and interpolate them while animating.

The biggest advantage of such methods is realism. If examples are produced manually,
the user is only limited by his skills and time. Subtle effects like muscle bulges or even
tendon tension can be added. Once a sufficient number of poses is added the system can
produce deformations even for poses far from the examples. The drawback is it can take
weeks to setup a single character.

2.3.0.1 Pose space interpolation

Pose space interpolation [LCF00] is a well known system often used in medium or big
animation companies. It is used in realistic scenes as in the short movie "Animatrix - Osiris
last flight" with close-ups on arms, hands or shoulders. It is also used for more expressive
animations in Walt Disney’s "Bolt" to give life to Rhino the hamster.

The technique usually relies on a geometric skinning method. First the user animates
the character (using linear blend skinning for instance) and then refine the shape at some
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key position by sculpting the mesh. The corrected shape is stored as a set of displacement
vectors bound to each pose of the skeleton. Once all the poses are defined, the system
can interpolate the displacement vectors given the skeleton pose. This is a scattered data
interpolation problem. The pose space deformation introduced by Lewis et al. [LCF00]
use radial basis functions (RBFs) to solve it.

RBFs are basis functions φ : Rn → R whose value depends on the distance from the
evaluated point to the RBF’s node center c. A Gaussian RBF can be written:

φ(‖x− c‖) = exp
−‖x− c‖2

2σ2

For the interpolation problem what we want is a function, which interpolates the dis-
placement vectors between the prescribed poses. For each vertex we need to define a func-
tion d : Rn → R3 which returns the displacement vector v ∈ R3 given the skeleton’s pose
x ∈Rn. It is done through a linear combination of RBFs:

dx(x) =
N
∑

i=1

wx,iφ(‖x− xi‖) (2.6)

Here N is the number of poses xi and wx,i scalar weights to be found. The function
dx interpolates the x coordinates of the displacement vector. A pose x can be defined in
many ways. In the context of skinning Lewis et al. suggest using the angles θk of the k th

joint. A pose is then defined by x = [θ1,θ2 . . . ,θk] whose distance to another pose can be
computed using a standard Euclidean distance ‖x− xi‖=

p

xT xi . Notice that the Gaussian
parameter σi can be set to the same value for every pose, or chosen for each pose manually.
The intuition is that σ defines the radius of influence of a pose.

To compute the interpolating function d = (dx , dy , dz)
T , we need to find the weights

wx,i , wy,i and wz,i by solving at each vertex three linear systems Φw= d with:

Φ=









φ(‖x1− x1‖) . . . φ(‖xk − x1‖)
... . . . ...

φ(‖x1− xk‖) . . . φ(‖xk − xk‖)









, w=









w1
...

wk









, d=









v1
...

vk









Lewis et al. [LCF00] solve it using the least square method:

ΦTΦw= ΦT d

Pose space deformation is a very generic approach not limited to skinning. It corrects a
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set of parameters in the pose space which can be defined in various ways. For instance
we can use the method for facial animation. A pose could be the mood of the character
(joy, sadness etc.) and modified with a slider going from happy, through neutral, to sad.
Moreover, it is not mandatory to use vectors as corrective parameters, for instance we could
use the distance between the eyes or the eyebrow’s height. All we need is to define how a
pose is represented (joint angles, buttons, sliders etc.), the distance between poses and the
corrective parameters.

In practice the technique enables the user to refine the deformations incrementally.
Each time the shape is not satisfactory, an example can be added at a specific pose. The chal-
lenge for the user is to visualize a large pose space. When the number of examples increases,
it can be overwhelming to understand what role plays each pose to the final deformation.
The parameter σ which defines the distance between poses can be also unintuitive to setup.

Pose space deformation will enable interactive frame rates, however this runtime per-
formance is directly linked to the number of examples. The evaluation of the interpolating
function is 0(n) where n is the number of poses and it is computed for each vertex. This
extra cost will be directly added to the underlying animation pipeline. Furthermore, pose
space deformation is not especially efficient at saving memory since it has to store every ver-
tex in the mesh for each pose in addition to the weights wi . Some work has been done which
significantly reduces the memory footprint using principal component analysis [KJP02].
Finally, when the extrapolation of the data set is not satisfactory one may rely on a more
elaborate method based on shape interpolation for better results [WSLG07].

2.3.0.2 Multiple weight enveloping

The number of achievable shapes with linear blending is very limited. But if we increase
the number of weights [WP02] the degrees of freedom will be augmented. If we go back to
equation 2.4 and show the entries of the transformation matrix Ti :

p̄=
N
∑

i=1

wiTip=
N
∑

i=1

wi













ti ,11 ti ,12 ti ,13 ti ,14

ti ,21 ti ,22 ti ,23 ti ,24

ti ,31 ti ,32 ti ,33 ti ,34

0 0 0 1













p

Instead of a single scalar weight associated to the bone i t h we can assign a whole matrix
corresponding to every entry of T :
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p̄=
N
∑

i=1













wi ,11 ti ,11 wi ,12 ti ,12 wi ,13 ti ,13 wi ,14 ti ,14

wi ,21 ti ,21 wi ,22 ti ,22 wi ,23 ti ,23 wi ,24 ti ,24

wi ,31 ti ,31 wi ,32 ti ,32 wi ,33 ti ,33 wi ,34 ti ,34

0 0 0 1













p (2.7)

Adjusting theses weights to match a set of examples can be done using least square fit-
ting. The main drawback lies in the memory consumption. More weights means more
memory and more computation when deforming the mesh. This can prevent efficient im-
plementation on a graphic card processor due to bandwidth restrictions and the limited
number of attributes per vertex. However there is a more compact solution [MMG06a]
similar to this method using fewer skinning weights.

2.3.0.3 Additional joints

Increasing the degrees of freedom of the linear blending can also be achieved by adding
more joints in strategic areas. Their positions will depend on the set of examples to repro-
duce. These joints are often called virtual joints since they are not intended to be directly
manipulated by the end user. They usually don’t have an obvious anatomical meaning.

The first technique introducing this idea [MG03] relies on linear blending and tries to
capture the usual deformations such as muscle bulges while avoiding a loss of volume. Only
a predefined number of joints are added. For the bicep bulge, joints are added in the middle
of the arm’s bone and orthogonal to it. These new joints will scale proportionally to the
arm’s bending angle. Loss of volume can be avoided similarly by adding joints between
bones.

Once the joints are added given these heuristics, each vertex is assigned to the k most
influential bones. To this end each vertex is expressed in the local frame of every bone.
Then we observe the vertex’ local position according to the set of examples. The larger the
amplitude of the vertex’ position the weaker the bone influence is. When the k most influ-
ential joints are defined, one can compute the skinning weights that adjust linear blending
deformation to the set of examples. This is done by a least square fit:

‖
n
∑

i=1

p̄i −pe x,i‖
2

Where pe x,i is the vertex position for the i th example and p̄i =
∑m

i=1 wi Tipi the vertex
deformed by linear blending. This is a bilinear problem in the skinning weights wi and
vertices pi . Its resolution is performed by an iterative process but its solution is relatively
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quick. For instance for 6000 vertices with 5 joints per vertex and 50 examples, computation
lasts 5 minutes. Moreover the authors only use a CPU implementation while the operation
could be parallelized easily.

To conclude, this method is the least memory intensive among the example-based ap-
proaches. It relies on an unmodified linear blending with only a few additional joints. This
makes it a good candidate for gaming applications. It is also very robust when the pose is
far from the set of examples.
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2.4 Volume preservation

(a) (b)

(c) (d)

Figure 2.19: (a) Deformation with linear blending (b) Isotropic volume correction (c) Mus-
cle bulge created by increasing the z axis influence (d) A wrinkle effect. [RHC09]

Another approach for solving linear blending loss of volume artifacts, is to minimize
this loss of volume directly [FTS08, RHC08, RHC09]. First the mesh volume must be
computed at rest pose V (pr ), this is done by a simple operation looking up every triangle
T of the mesh:

V (p) =
1
6

∑

(i , j ,k)∈T

pi .(p j ×pk) (2.8)

While animating, corrective vectors u are computed in order to displace vertices, Wol-
fram Von Funck & al [FTS08] show only a cubic equation needs to be solved in order to
modulate the corrective vectors’ lengths and restore the rest pose volume. Damien Rhomer
& al [RHC09] demonstrate a more flexible process where the corrective vectors u are min-
imized under the constraint V (p+u) =V (pr ).

¨

min ‖u‖2

constraint V (p+u) =V (pr )
(2.9)

The minimization is done iteratively for each of the three axis (x,y,z) of u in the local
frame of the joint. This enables the user to specifies the amount of correction for each axis.



29

The system even allows the definition of 1D functions to control the amount of volume
correction along the bones for each axis. Muscles bulges are then possible or even wrinkles
(cf. figure 2.19).

The method offers a good control over deformation and solves the loss of volume prob-
lem, but it does not address the rigidity of the deformation: the result still looks very soft,
skin contacts between limbs are not handled either. Moreover computing the volume re-
quires a water-tight mesh which adds an additional constraint for the user.

2.5 Summary

In this chapter we presented an overview of the main skeleton based real-time skinning
methods. We can distinguish two different groups: automatic methods, example-based
methods.

Automatic methods such as dual quaternions (used with automatic skinning weights)
are extremely fast but produce soft or rubbery results compared to a true bone joint de-
formation. In addition, the user have limited control over the final deformation. Volume
preservation is more flexible but operates at low frame-rates and the joints still look rather
soft.

Example-based methods can be very realistic and offer a total control of the deforma-
tion. But this is only possible with the help of the user time and skills. Pose space deforma-
tion will often require dozens of different poses. Each pose usually needs an entire re-sculpt
of the character’s limb in its new position. Fine details can be added such as wrinkles or
even dilated veins, again, it mainly depends on the user’s experience and perseverance.

As an extra catagory, we saw how to handle the deformation of limbs without joints
such as tentacles spines etc. Such specialized deformations require additional techniques,
such as curve deformation which are used in conjuction to a more traditionnal skinning
system.

Lastly we notice that none of these methods provide automatic skin contact out-of-the-
box. Methods including skin contacts are usually too slow to be used in real-time [MZS+11]
or only guarantee the mesh to be self-intersection free [vFTS06, vFTS07, AS07]. Self-
intersection free does not mean true skin contact is produced, because large gaps can remain
in between skin parts of the folding area of the limbs.
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Chapter 3

Technical background on 3D scalar
fields and implicit surfaces

3.1 Introduction

Our work heavily relies on implicit surface modeling techniques. For readers unfamiliar
with the topic this section provides a technical background necessary to fully grasp our
contributions.

First we introduce the necessary definitions and vocabulary related to implicit surfaces.
Secondly we describe a technique for implicit surface reconstruction from a point cloud
(Hermite Radial Basis Function HRBF [Wen05, MGV11]). Finally, we describe popular
implicit surface composition operators and in particular gradient-based composition oper-
ators [GLC+11, CGB13].

3.2 Implicit surfaces

3.2.1 Examples

Implicit surfaces are defined with potential functions f : R3→ R. For instance, the Carte-
sian equation of a sphere defines an implicit surface:

‖p− c‖2−R2 = 0 (3.1)

⇔ f (p) = 0 (3.2)
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When f (p) = 0 the point p belongs to the sphere of center c ∈ R3 and radius R ∈ R.
The surface is said to be defined implicitly since the equation does not compute explicitly
points on the surface. On the contrary, a parametric equation h(u, v) :R2→R3 explicitly
defines a surface as we can directly compute points on the surface for each parameter (u, v).
Indeed, h(u, v) directly returns a point on the surface while we need to look up f to find
points associated to the value 0. Interestingly, f can be seen as defining a volume explicitly
since we can directly test if a point is inside f (p) < 0 or outside f (p) >= 0 the volume.
From this perspective h can define an implicit volume.

3.2.2 Definitions

The function f maps every 3D point of the ambient space p to a scalar value, also called
potential of f . Therefore f is often called a scalar field or a potential field. One way to
interpret f is to think of it as a temperature field where each point in space is associated to
a temperature. In this case, we could draw a surface going through the points having the
same temperature. This set of points would define an implicit surface.

Other interpretations of f are possible. For instance f can be seen as a distance field
since f defines the distance from points p to the implicit surface f (p) = 0. As we go away
from the surface f (p) = 0, points associated to the same values f (p) = c form an iso-surface
associated to the iso-value c . Consider the sphere equation 3.2 for which c = 0, it defines
an iso-surface whose shape is a sphere of radius R. Similarly c = 1 defines a sphere of larger
radius

p
R2+ 1> R.

f = c 
0 

Figure 3.1: A scalar field f can be seen as an infinity of implicit surfaces, each surface is
defined as a set of point of equal iso-value f (p) = c . In the case of the sphere equation it
defines an infinity of nested spheres

Formally an implicit surface S is defined as the set of points for which f has equal
iso-value c :
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S = {p ∈R3| f (p) = c}

Visualizing the potential field defined by f in 3D can be tedious, usually one re-writes f
as a 2D planar cut of the 3D potential field, for instance with fc (x, y) = f (x, y, 0) as depicted
in Figure 3.2. Here, instead of iso-surfaces, we visualize iso-curves of the 2D potential field
fc (x, y). Two points located on the same level curve have the same potential, reading the
figure is the same as reading a geographical map with elevation curves. It is worth noting
the gradient∇ f is always orthogonal to the iso-curves.

0+ ­

Figure 3.2: Left: cut along (x, y) plane of the scalar field of a sphere (equation 3.2) and right
the iso-curve visualization.

One can easily compute the normal to an iso-surface at any point by computing the
gradient of f :

∇ f (x, y, z) =







∂ f (x,y,z)
∂ x

∂ f (x,y,z)
∂ y

∂ f (x,y,z)
∂ z







The normal at the (x, y, z) coordinates:

∇n(x, y, z) =−
∇ f (x, y, z)
‖∇ f (x, y, z)‖

3.2.3 Implicit surface support

The scalar field of an implicit surface can have various behavior, here we distinguish two
types of support for implicit surface primitives: global support and compact support. A
primitive with global support will see its potential vary anywhere in the ambient spaceR3.
On the other hand, compactly supported primitives will only vary in a finite interval and
potential outside a certain range will be constant. Formally:
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• for a globally supported primitive we say there are no balls such as the field-function is
constant outside.

• For a compactly supported primitive, there is a ball such as the field-function is constant
outside.

Figure 3.3 depicts global and compact support.

0.5

0.5 <

0.5 >

0

0

0
0

0
0

0

0

0

­

+

-∞

+∞
(a) (b)

Figure 3.3: (a) compactly supported primitive, the distance-field of this cylinder is com-
puted as the distance from a point to its median segment, the blue arrow represents the
primitive radius beyond which the potential is null. (b) has global support, it is the plane
equation, the potential approaches infinity as we get farther from the plane.

3.2.3.1 Global support

The equation 3.2 has global support, the sphere’s potential indefinitely increases as we go
away from its center. This is also the case of some Cartesian equations defining simple prim-
itives such as cylinders, planes etc. When modeling 3D objects we adopt certain convention
to represent globally supported primitives:

• the iso-surface f (p) = 0 is the surface of interest which the user manipulates and
visualize.

• f (p)< 0 inside the object

• f (p)> 0 outside the object

3.2.3.2 Compact support

Primitives with compact support are often defined by the inverse distance from a point,
segments, polygons etc. In this case, the distance equals one at the center of the primitive
and smoothly decreases until zero is reached. The distance stays constant outside a specified
radius. We adopt the following conventions for compactly supported primitives:
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• f (p) = 0.5 is the surface of interest.

• f (p)> 0.5 inside the object

• f (p)< 0.5 outside the object

3.2.3.3 Global versus compact support

Compact support has appealing features over global support. Because the field’s range is
confined this enables scalar-field to be stored into a 3D discrete grid, this greatly acceler-
ates the evaluation of the field-functions (needed for instance in ray-casting [GPP+10]).
Generally speaking, compact support is easier to apprehend and work with. For instance,
when blending several objects, one only focus on local interaction between primitives. We
can take advantages of this locality to further optimize the blending algorithm computa-
tion. In addition, interesting composition operators were recently developed for compactly
supported primitives such as gradient based composition operators [GLC+11,CGB13] (de-
scribed later in this chapter). For all the above reasons our work only relies on primitives
with compact support.

3.3 HRBF surface reconstruction

To model complex shapes, one usually makes use of the natural ability of the implicit sur-
faces to blend. It is possible to combine simple primitives (spheres, cylinders etc.) in various
ways, for instance union, blend, intersection etc. While this can be useful to model new
models, it can be difficult to approximate existing shapes this way. In our work we rely on
a surface reconstruction method called Hermite Radial Basis Function (HRBF) [Wen05,
MGV11]which allows us to compute implicit surface primitives approximating an existing
mesh model or subpart of the model. We summarize the HRBF method in this section.

3.3.1 Method overview

The reconstruction problem consists in finding a field-function f : R3→ R satisfying the
constraints f (pi ) = c with i ∈ [1;N ]. In other words, we seek an implicit surface f which
zero iso-surface fits our input data, i.e a point cloud defined by the positions pi . Therefore
f interpolates the iso-value c in the ambient space R3. Unfortunately, we need more con-
straints since solving for f (pi ) = c leads to the trivial solution f (x) = c (in other words
f is constant everywhere in the ambient space). One way to alleviate this, is to add more
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constraints with offset points inside and outside the desired implicit surface (i.e adding
points with potential equal to c ± ε). Offset points are not ideal since they can produce
self-intersection of the implicit surface in concavities, this can make the reconstruction un-
stable. This approach is commonly known as the RBF fitting method. A more in depth
study of the RBF approach can be found in Reuter’s thesis [Reu03].

In our work we use a more flexible variant of the RBF technique called HRBF [SOS04]
for Hermite RBF. In this version, in addition to the iso-value constraints f (pi ) = c we
use gradient constraints ∇ f (pi ) = ni . The interpolated data are Hermite data, i.e. the
pair of points and normals (pi ,ni ). Adding the gradient constraints avoid us the hassle of
adding more value constraints with offset points. This results in a simpler and more robust
reconstruction technique (see figure 3.4).

(a) (b) (c)

Figure 3.4: Reconstruction of Hermite data (green dots and lines) with various configura-
tions. (a) Capsule shape reconstruction then (b) one sample’s position is changed and (c)
only a single sample’s normal is rotated.

Within the HRBF framework f is expressed as follows:

f (x) =
N
∑

i

αiφ(‖x−pi‖)+β
T
i ∇φ(‖x−pi‖)

f (x) =
N
∑

i

αiφ(‖x−pi‖)+β
T
i

�

φ′(‖x−pi‖)
x−pi

‖x−pi‖

�

With N the number of samples, αi ∈ R a scalar and βi ∈ R3 a vector. φ is a radial
basis function for which we recommend the polyharmonic spline φ(x) = x3. Empirical
experiments using our skinning technique showed us x3 was more robust than other RBFs
such as thin plate splines, Gaussian or other polynomial.



36

The expression of the gradient of f will be necessary:

∇ f (x) =
N
∑

i

αiφ
′(‖x−pi‖)

x−pi

‖x−pi‖
+∇∇φ(‖x−pi‖)
︸ ︷︷ ︸

Hessian of φ(‖x−pi‖)

βi

In order to interpolate the surface going through the input point cloud, we must find
the weights αi and βi solving the following linear system:

�

f (pi )
∇ f (pi )

�

=
�

c
ni

�

the system contains n+ 3n equations which expands as follows:


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
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...

f (pN )
fx(p1)
fy(p1)
fz(p1)
fx(p2)
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This system is dense and not symmetrical and will be robustly solved with a standard
LU decomposition. Fortunately, once the coefficients αi andβi are computed they can be
stored once and for all, thus it does not impact the evaluation of the implicit surface f .

3.3.2 HRBF support

Due to our choice to use the RBF φ(x) = x3, the generated field-function f has global
support (note that c is set to zero to respect our conventions). This prevent us to use com-
position operators designed for compactly supported primitives. We could have used a
compact RBF but as stated earlier, experiments showed us this impacts the stability of the
reconstruction. Instead we can map our globally supported primitive to a compactly sup-
ported primitive. For this we use a map function tr :R→Rwhich takes into input a glob-
ally supported primitive and outputs a bounded scalar-field. The new scalar-field tr ( f (x))
has a compact support between [0;1] and is null outside the radius r (c.f. figure 4.5). The
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mapping is detailed section 4.4.

3.4 Field function composition

The main strength of implicit surfaces comes from their simplicity to be combined to-
gether into a new shape. Indeed, expressing the union, intersection or difference between
implicit surfaces is extremely straightforward. Implementing a boolean modeling interface
(figure 3.5) becomes easy with this representation.

Figure 3.5: Boolean modeling, union ∪, intersection ∩ and difference − are performed
among several objects resulting in a more complex shape. The order composition opera-
tions are applied form a CSG tree (Constructive Solid Geometry).

On the other hand, it is known the combination of parametric surfaces (or meshes)
is substantially harder to implement due to the numerous special cases to handle and nu-
merical instabilities. In this section, we describe the composition mechanism between field
functions. As stated earlier, we will only discuss the composition of compactly supported
primitives.

3.4.1 2D composition operators

Let us define the combination between two surfaces. Most composition operators are de-
fined as a 2D function g :R2→R. The operator takes in input two field functions, f1 and
f2, then returns a new scalar field g ( f1, f2) representing the combination of the two input
implicit surfaces.

One of the simplest composition operator was introduced by Ricci and is expressed
with the function maximum [Ric73]. It is possible to perform the union of two primitives
(figure 3.6) by only computing the maximum between the two scalar-field max( f1, f2).



38

f
1
>0.5

f
2
<0.5

f
1
<0.5

f
2
>0.5

f
1
>0.5

f
2
>0.5

f
1

f
2

g
 
>0.5 g>0.5g>0.5

g<0.5

f
1
<0.5 f

2
<0.5

g<0.5

Figure 3.6: Upper left, illustration of two spheres and the sign of the potential according to
the different regions (recall a compact support implies f < 0.5 outside and f > 0.5 inside).
On the right, resulting surface from the composition g ( f1, f2) = max( f1, f2).

Interestingly one can infer the intersection and difference operator from the definition
of the union:

S1 ∩S2 = ¬(¬S1¬S2)

S1−S2 = S1 ∩¬S2

Therefore, from the max operator the intersection is mi n( f1, f2) and the difference
mi n( f1, 1− f2).

Other operators allow more complex effects such as a smooth blending of the objects or
even the production of wrinkles or bulges around the colliding areas. A popular operator
producing a smooth blend is the sum operator g ( f1, f2) = f1 + f2. This operator is often
used with metaballs [BW97] (see figure 3.7 left). It also possible to control the amount of
blend surrounding the colliding parts with more advanced operators [BWd04].

In our work, we rely on a special type of composition operator called gradient-based
operator. Those operators behave differently according to the angle between the gradients
(∇ f1 and∇ f2) of two distinct primitives [GLC+11]. This can be used to localize a blending
effect, such as bulge, within a particular area. In addition, gradient-based operators solve
multiple problems found in less advanced operators (e.g. the sum operator).

An operator driven by the gradient angle of two primitives is expressed as follows:
gd ( f1(p), f2(p)) where f1 and f2 are the composed primitives at point p and α is an interpo-
lation parameter between two types of operators. For instance, g can interpolate between
a union and a blending operator. The parameter is controlled by a function d (α) :R→R
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called controller (figure 3.8). The controller takes into input the angle α = ∇ f1Ý∇ f2 be-
tween the two primitives and maps it to the desired composition operator. With very sim-
ple geometric observation one is able to apply an operator in specific areas by customizing
the controller function d .

Let’s observe a composition operator which interpolates between a smooth blending
when α = π

2 and an union α = 0 (i.e. collinear gradients). The result is depicted in Fig-
ure 3.7. Three cylinders are composed together in order to form the letter ”A”. On the
left smooth blending is applied everywhere, the final object bulges at the intersection of
the cylinders and there is no hole in the middle, contrary to what we would expect. On
the right smooth blending is localized appropriately and a standard union applied every-
where else, therefore no bulge occurs and the hole in the middle of the letter preserved.
Smooth blending localization is driven by the angle between the gradients of the cylinders
(or equivalently the normals). Areas where gradients are collinear or almost collinear will
be composed with a standard union, areas where the angles is closer to π

2 will be blended.

Figure 3.7: Left, three cylinders form the shape “A” using a standard smooth blending op-
erator. Right, gradient based operator the blending is localized at the intersection of the
cylinders and the hole preserved. Source: [GLC+11]

This type of control is especially useful in the character animation context. For in-
stance, when animating a finger joint or elbow joint, we can localize bulge in the fold of
the finger joint or a smooth blend in the interior of the elbow.
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Figure 3.8: (a) Controller function as described by Gourmel & al [GLC+11]. d (α) can be
parametrized by three control points p0(d0,α0), p1(d1,α1) et p2(d2,α2). It is also possible
to customize the slope of the curve between the points p0 and p1, or also between p1 and
p2 by setting scalar values w0 and w1. We plot different values of w0 and w1 with different
colors. (b) Plots the controller function for figure 3.7 right.
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Chapter 4

Implicit skinning

4.1 The bigger picture

This research focus on skinning, a quite specific topic within computer animation, but we
further motivate this work by broadening our scope.

An underlying goal of this research, is to explore the use of implicit surfaces and blend-
ing operators used in conjunction with meshes. Meshes and implicit surfaces can be con-
sidered as dual representations, meaning the strength of one is the weakness of the other
and vice versa. For instance implicit surfaces are more efficient for collision detection. In-
deed they are explicitly defined by the notion of inside and outside of a volume. Closed
meshes define volume implicitly, therefore they need intermediate steps to distinguish in-
terior from exterior. In other words, any operations that need an explicit volume will be
more straightforward using implicit surfaces. For instance boolean modeling is known to
be more robust with implicit surfaces and more generic to implement (i.e with less special
cases to handle). The corollary is that explicit operations on surfaces need an explicit sur-
face representation. Rendering meshes is several order of magnitude faster than implicit
surfaces and they are easier to parameterize.

One of the innovation of this research is to further the exploration of a hybrid implicit-
mesh technique [LAG01]. A practical application such as character skinning, demonstrates
the advantage of the duality presented above. Issues such as collision detection are to be
considered to simulate skin contacts between limbs. Correct parametrization is important
as well to produce plausible skin deformation (e.g skin sliding and elasticity). Finally the
system must be fast enough to enable animators to work with the character.
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4.2 Framework overview

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.1: Overview. (a) An input mesh with its animation skeleton and (b) mesh segmen-
tation. (c) Implicit surfaces computed as 0.5-isosurfaces of HRBFs approximating each part
of the mesh. (d) Composition with a union operator, and resulting shape. (e) Each vertex
is assigned to a field value in the rest pose. (f) During animation, field functions are trans-
formed rigidly and the mesh deformed with a computationally inexpensive method (dual
quaternion skinning or rigid skinning), then mesh vertices can march along the field gradi-
ent until they reach their individual iso-value. (g) This produces the final skinned mesh. In
(e), (f) and (g), the isosurfaces of the field function are plotted in a vertical plane centered
on the skeleton. In blue, the outside values ( f < 0.5) and in red the inside values ( f > 0.5).

The steps of the framework we set out to devise are illustrated in Figure 4.1. As for
standard geometric skinning [MTLT88, KCvO08], we will start from a mesh equipped
with an animation skeleton defined as a hierarchy of bones (Figure 4.1(a)). In addition,
the mesh will already be partitioned with respect to skeleton bones (Figure 4.1(b)). Since
partitioning is out of the scope of our research, this input can either be provided by artists
or automatically generated. For instance, we can deduce the partitioning from skinning
weights, by simply assigning vertices to bones with the largest influence.

From these initial settings, we can use Hermite Radial Basis Functions (HRBF) [Wen05,
MGV11] to approximate each part of the mesh with the 0.5-isosurface of a smooth scalar
field fi : R3→ R (Figure 4.1(c), Section 4.4). We can then define, a single field function f



43

from the combination of the fi using either the union [Ric73], or gradient-controlled bulge
operators [GBC+13] depending in the desired result (Figures 4.1(d)). In addition to these
state of the art operators, we define a new family of gradient-based composition operators
specifially designed for the implicit skinning. These operators are able to capture contact
surfaces between different parts of the implicit skin and to generate a smooth field around
it (Section 4.5). They allow more control over the shape of the deformation and further
stabilize our isosurface tracking algorithm.

After these steps we have the whole character approximated by a single field function
f . The last pre-computation needed is that, each vertex v of the mesh needs to store its
current field value f (v). This step will ensure the details of the mesh are encoded (similarly
to a displacement map each vertex saves its distance from the 0.5 isosurface).

From these settings we need to deform the character while animated. Deforming the
implicit surface f is done easily by moving the different implicit parts fi as a rigid body. The
blending operators will ensure the time coherency and well-behaved shape of f . Tracking
the implicit surface f as it changes with the mesh is the key operations for successful skin-
ning. Two types of algorithms can be designed: history independent algorithms [VBG+13]
or history dependent algorithms [VGB+14] (both presented Section 4.6.3.1). We dub the
history independent version the implicit skinning method [VBG+13] and the history de-
pendent version the elastic implicit skinning [VGB+14].

4.3 Contributions

To the best of our knowledge, the idea to use implicit surfaces to drive the deformations
of a pre-existing mesh-based character while preserving its details has not been previously
explored. This allowed us to develop the first method simulating, in real time, skin contacts
and other effects such as skin bulge, skin elasticity or even muscle bulging.

In addition to a novel skinning approach, our main technical contributions are:

• A specific reconstruction method for mesh parts, based on Hermite Radial Basis
Functions (HRBF) [Wen05].

• New composition operators enabling us to approximate the shape of the charac-
ter’s skin during animation with an implicit skin that includes contact surfaces with
a controllable depth, as depicted in Figure 4.20(c) (Section 4.6.3.2).

• Two isosurface tracking algorithms. First, a fast, history independent algorithm
easy to integrate in standard animation pipeline (Part of our implicit skinning method [VBG+13]).
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(a) - Dual Quat. (b) - Imp. Skinning (c) - Elastic Imp Skinning

Figure 4.2: Illustration of different skinning solutions on a cylinder deformed with a sin-
gle joint. (a) Dual quaternions produce bulge and self-intersection artifacts. (b-top) The
implicit skinning corrects these artifacts, (b-bottom) but the projection stage fails for too
large bending angles. (c) Elastic implicit skinning avoids self-intersections, produces a con-
tact surface and minimizes mesh distortions, even for very large bending angles.

It consists in a fast marching algorithm for mesh vertices in a scalar field, used in con-
junction with a specific mesh relaxation method avoiding the introduction of mesh
distortions. Finaly, a slower, yet more robust history dependent tracking method
based on a linear relaxation energy (inspired from the as-rigid-as-possible energy [SA07])
to update the skin mesh with a plausible tangential distribution of vertices, as shown
in Figures 4.2(c) or 4.16(c) Section 4.6.3.1. The history dependent tracking was pre-
sented along with our work introducing elastic implicit skinning [VGB+14].

• Easy extensions to advanced effects such as muscle inflation (Figure 4.23) and skin
sliding, thanks to the clear decoupling between volumetric deformations handled by
the implicit skin and stretching effects handled by the skin mesh (Section 4.6.3.2).

The resulting techniques generates visually plausible skin deformations in real-time.
Our methods automatically generates contact surfaces between skin parts, without requir-
ing any collision detection step.
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4.4 Reconstruction ( fi )

Problem setting. Given a bone i and its associated sub-meshMi , our goal is to recon-
struct a smooth scalar field fi that tightly approximatesMi . In contrast to the standard
surface reconstruction problem, our fi needs to satisfy several specific constraints.

Firstly, high field smoothness is essential to avoid unexpected behaviors of the gradient-
controlled operators (Section 4.5) and to stabilize gradient-descent projection (Section 4.6.2.1
and 4.6.3.1) during animation. Smooth fields also require fewer parameters, which reduces
their memory footprint and speeds up the fitting and evaluation steps. In order to reach
this smoothness while preventing loss of details of the input shape, our insight is to embed
the mesh in the resulting scalar field, rather than having it exactly coincide with the 0.5-
isosurface: each vertex v j stores its local field value f (v j ) at rest, enabling it to be projected
onto its own isovalue during deformation.

Secondly, the field function fi should appropriately close the large holes left by the mesh
partitioning near joints as depicted by the blue curve in Figure 4.3(a).

Lastly, to allow for local compositions of the fi , as well as to speed-up the evaluation of
f , the field functions should be compactly supported. Following our conventions from the
technical background, we require fi to range in [0,1], with 0.5 being the reference isovalue,
and use the convention: fi (x)> 0.5 if x is inside, fi (x)< 0.5 if x is outside.

s
j

(a) (b) (c)

Figure 4.3: Reconstruction of a mesh part (a phalanx of the hand shown in Figure 4.1). (a)
HRBF nodes are uniformly spread on the mesh surface, and two additional nodes in red
are aligned with the bone to close the holes. (b) The resulting implicit surface, and (c) its
associated compactly supported scalar field. [VBG+13]

Hermite RBF. Given all these constraints, we propose the use of Hermite RBFs [Wen05,
MGV11] to reconstruct a global signed distance field di (the mesh being approximated by
the zero isosurface). This distance field is then re-parameterized to yield the compactly
supported field function fi .
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The HRBF enables interpolating Hermite data (set of positions and normals) seamlessly
without having to populate the whole space with RBFs, nor relying on offset constraint
points which can produce reconstruction artifacts [SOS04]. In addition, it is scale inde-
pendent and it robustly reconstructs concavities. Recall, we seek a distance field di of the
form:

di (x) =
m
∑

k=1

�

λkφ(‖x− vk‖)+βββ
T
k∇φ(‖x− vk‖)

�

, (4.1)

where the vertices vk are the HRBF centers, the scalars λk and vectorsβββk are the unknown
coefficients, andφ is a smooth function for which we recommend the polyharmonic spline
φ(x) = x3. Given a set of m points vk with prescribed normals nk , the 4m unknown
coefficients are easily found by solving for the system of 4m equations: di (vk) = 0 and
∇di (vk) = nk . At this stage, di has global support and will be re-parametrized to a compact
support with di = 0.5 fitting our Hermite data.

There still remains the delicate choice of the HRBF centers. Since we only want to ap-
proximate the input sub-meshMi while leaving out the details, a natural choice is to sample
the mesh surface with a few samples. To handle arbitrary meshes robustly, we employ a
Poisson disk sampling strategy [WCE07] (Figure 4.3(a,b)). In all our tests, targeting around
50 to 100 samples has always been sufficient.

Even though degree three polyharmonic RBFs naturally fill the large holes left at the
bone extremities (Figures 4.4(a,b)), they have to be closed in such a way that the common
extremities of two adjacent fields slide over each other without introducing gaps, or cre-
ating outgrowths as is the case in Figure 4.4(b). Indeed, this would result in a poor skin
deformation at joints, as illustrated in Figure 4.4(c). Ideally, the extremities of two fields at
a given joint should be filled with spherical components of the same radius and centered at
the joint location, which is impossible in general. Following this observation, we propose
to adjust the closure of the distance field as in Figure 4.4(d) by adding one HRBF center at
each extremity along the line supporting the bone i and at a distance s j from the respective
joint j (Figure 4.3). Their normal constraints are aligned with the bone and point outward.
The distance s j is set as the distance from the joint to the nearest vertex. This allows us to
generate a plausible bone joint deformation automatically (Figure 4.4(e)).

Finally, in order to let the HRBFs produce a very smooth surface, samples which are
too close to a joint are automatically removed. To this end we employ culling planes or-
thogonal to the bone and placed at a distance h of the extremities. Formally, let b0

i and b1
i

the two extremities of the bone i , all vertices vk that do not satisfy the following criterion



47

are removed:

h <
(vk −b0

i )
T (b1

i −b0
i )

‖b1
i −b0

i ‖2
< 1− h . (4.2)

We found h = 0.05 to be an effective value. Since HRBFs are computed in a few mil-
liseconds, vertices could be easily and interactively added or removed by the user if the
automatically reconstructed surface was not fully satisfactory.

(a)

(b) (c) (d) (e)

Figure 4.4: Two implicit surfaces reconstructed from two phalanxes of the index finger
(Figure 1.2(a)) with a joint in its center shown in (a). (b) When reconstructed without our
additional closure constraints (extra points along the bone axis), the junctions overlap, re-
sulting in unexpected bumps. (c) Undesired visual result obtained after projecting the mesh
vertices. (d) The additional closure constraints used to solve the problem are shown in red.
(e) Resulting mesh after vertex projection: bumps are prevented and the mesh adequately
models the joint.

Re-parameterization. Finally, the compactly supported field functions fi we seek are
computed using the following remapping: fi (x) = tr (di (x)), tr being defined as:

tr (x) =











1 if x <−r
0 if x > r
−3
16 (

x
r )

5+ 5
8(

x
r )

3− 15
16(

x
r )+

1
2 otherwise ,

where r is a value which sets the size of fi s compact support. We plot tr figure 4.5. The
purpose is to convert the infinite support of the HRBF di into a finite support field function
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fi , while ensuring smoothness at the border of its support. More precisely, tr is defined as
to map the HRBF values of di which are in [−r, r ] smoothly onto the interval [0,1], with
tr (−r ) = 1 and t ′r (−r ) = 0 (inside the shape), tr (0) = 0.5 (on the surface) and tr (r ) =
t ′r (r ) = 0 (outside). In order to avoid getting constant values fi = 1 and thus null gradients
inside the shape, we set r to the distance between the bone and the farthest sampling point
used for reconstruction. Then, fi = 1 is only reached on the skeleton and the support size
nicely scales with the size of the reconstructed shape. Note that this piecewise function tr

is C 2 at its junctions. This guarantees the continuity of the gradient.

1

0

0-2 2-4-6 4 6 8-8 -r r

Figure 4.5: Plot of the field-function mapping tr from global support to compact support,
the radius r is set to r = 5. Note that t ′r (−5) = t ′r (5) = t ′′r (−5) = t ′′r (5) = 0, tr (0) = 0.5,
tr (−r ) = 1 and tr (r ) = 0.

The gradient∇ fi must be re-parameterized as well. Our mapping tr composed with the
scalar-field fi tells us: ∇(tr ◦ f )(x) = t ′r ( f (x)).∇ f (x). Therefore we need the first derivative
of tr :

t ′r (x) =
¨

0 if − r < x < r
−15
16r .( x

r )
4+ 15

8r .( x
r )

2− 15
16r otherwise
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4.5 Implicit skin definition

Once the individual compactly supported field functions fi are computed, we combine
them to define a global field function f fitting the whole mesh to be skinned. In our early
work [VBG+13] we mainly relied on Ricci’s max operator [Ric73] f =maxk( f̃k) to com-
pose the scalar fields fi . The max operator introduced a gradient discontinuity which we
used at our advantage to encode contact surfaces. The gradient discontinuities were con-
veniently placed in the fold of limbs colliding against each other, our tracking algorithm
would detect the discontinuity and stop vertices in the fold. Unfortunately, while this gave
satisfactory results, we noticed later the gradient discontinuity was responsible for flicker-
ing artifacts because we use those direction to project vertices.

In our latest work [VGB+14] we solve the problem of enabling skin volumes to blend
while sharing local contact surfaces using two new binary operators, organized in a com-
position tree [WGG99]. The leaves of the tree are the field functions fi each transformed
in the same way as its corresponding bone and the composition operators are the interior
nodes. A binary composition operator is a function g :R2→R combining two scalar fields
f1 and f2 in a new 3D scalar field fk(p) = g ( f1(p), f2(p)). Thus, each node of the tree defines
a 3D scalar field and the root is the scalar field f including the implicit skin. As introduced
earlier in the technical background, our application use a special type of composition op-
erators called gradient-based operators.

Recall gradient-based operators gd : R2 → R are parameterized by a function d : R→
R whose argument is the angle α between ∇ f1 and ∇ f2. The parameter d controls the
interpolation between two types of compositions, allows the discrimination of regions that
blend according to the gradient angle and the application of different types of compositions.
In the case of skinning, we use it to localize blending or bulge-in-contact effects in the fold
only.

In our context, the effect of these operators is simpler to understand by noticing that the
angle α between gradients in the folding regions is often close to the joint rotation angle. In
the rest pose, no rotation is applied and thus, no specific skinning effect is to be performed.
In that case, we need the 0.5 iso-surface of the scalar fields fi to be combined with a union
while the rest of the iso-surfaces are smoothly blended around the implicit skin. This type
of operator is called a clean-union operator [PASS95, BBCW10]. When a joint such as the
elbow bends betweenα= 0 andα=π/2, the skin does not crease and no contact iso-surface
need be generated. The use of a clean-union operator produces a smooth field around the
implicit skin. For larger bending angles, α >π/2 at an elbow, the contact iso-surface has to
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be created using our contact operator. In this case the larger the bending angle, the deeper
the contact surface goes towards the joint. Finally, when the gradients point in opposite
directions (α=π), it means two disjoint skin parts have come into contact, for instance an
arm against the torso, and a full contact operator should be applied.

Our first operator gdc
is parameterized by the controller dc for contact handling. It

smoothly interpolates between a clean-union (no contact) when dc (α) = 0 and a full contact
(contact of maximal length) when dc (α) = 1. Therefore gdc

can control the depth of the
contact. The behavior presented above leads us to the plot of dc (α) depicted in Figure 4.6(a).

Figures 4.7(a,b) illustrate the relation between (a) the plot of a contact composition
operator gdc

( f1, f2) and (b) its effect on the composition of two scalar fields f1 and f2 for an
intermediate value of dc . In Figure 4.7(a), the abscissa (resp. ordinates) are values of f1 (resp.
f2) and vertical (resp. horizontal) lines represents its iso-surfaces. The operator defines the
way the iso-surfaces of f1 and f2 are combined to produce the resulting scalar field fk . Values
of gdc

are those of fk when fk(p) = gdc
( f1(p), f2(p)). Here, gdc

= 0.5 on the 0.5 iso-surface
of f1 (in yellow) up to its intersection with the 0.5 iso-surface of f2 (in purple), and on the
0.5 iso-surface of f2 up to its intersection with the 0.5 iso-surface of f2. The result is the
union of these two surfaces. In addition, gdc

= 0.5 on the green line which starts at the
intersection of the combined 0.5 iso-surfaces and goes inside the fields f1 and f2 following
f1 = f2. This part of gdc

= 0.5 is the contact surface that is shown with the same color on fk

in Figure 4.7(b). This line always starts at the intersection of the combined primitives and
its length is controlled by dc . Other iso-lines of gdc

smoothly link values of f1 to values of
f2 by following the shape of gd = 0.5, resulting in a smooth distance field around gdc

= 0.5
in Figure 4.7(a) and thus around fk = 0.5 in Figure 4.7(b).

d
c

d
b

(a) (b)

Figure 4.6: (a) Plot of dc (α) to get contact at joints, and (b) db (α) to mimic the inflation of
tissues in contact situation.

By designing the same operator, but without contact (i.e., when dc = 0), we obtain the
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clean-union operator presented in Figure 4.7(c) whose effect on scalar fields is depicted in
Figure 4.1(c). On the other hand, with a contact line of maximal length (i.e., when dc = 1),
we get the full contact operator shown in Figure 4.7(d).

Our second operator gdb
is built similarly. It interpolates both the depth of the contact

and the inflation of the bulge-in-contact between a clean union operator when db (α) = 0
(no contact and no bulge, Figure 4.8(a)) and a full contact operator with maximal bulge
when db (α) = 1 (Figure 4.8(c)). Figure 4.8(b) illustrates this operator with intermediate
contact length and bulge-in-contact (db (α) =

1
2 ). The bulge-in-contact is performed by the

inflation of the 0.5 iso-lines of f1 and f2 in Figures 4.8(b,c). During the animation of a
finger, the parameter db (α) is set as illustrated in Figure 4.6(b). As we can see, in that case,
the bulge starts at low bending angles. Results produced by this operator are illustrated in
Figure 4.24.

In practice, the composition operator gdc
is applied by default at each skeleton joint, but

the user can select gdb
if desired. The binary composition tree (where implicit primitives

are the leaves and composition operators are the nodes) is then built as follows: We start
by creating nodes that link pairs of primitives with bulge-in-contact composition gdb

. This
forms the bottom of the tree. Then all the other nodes are added on top using gradient-based
contact gdc

, until all primitives are combined within a single tree. This specific composition
enables us to achieve both the required bulge surfaces at fingers and the contacts we are
looking for.

(a) (b) (c) (d)

Figure 4.7: (a) Our contact operator gdc
( f1, f2) for an intermediate value of dc and (b) its

application to the composition of two field functions articulated by a joint. In all figures,
the contact surface is in green. (c) Clean-union operator (dc = 0, no contact) and (d) full
contact operator (dc = 1).
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(a) (b) (c)

Figure 4.8: Our gradient-based bulge-in-contact operator gdb
. It interpolates between (a) a

clean union (db (α) = 0 no contact and no bulge) and (c) a full contact with maximal bulge
(db (α) = 1). In (b), this operator for an intermediate value of db .

4.5.1 Bi-harmonic evaluation

Since our scalar fields fi have compact support, they are bounded in space and thus, can be
stored in 3D grids enabling fast evaluation. It is the same for composition operators: we
pre-compute and store them in 3D grids for the three entries ( f1, f2, d ).

Most advanced composition operators, such as those based on gradient blending, have
very complex closed form equations, so some of them must be evaluated numerically, for
instance, using binary search.

Building new composition operators this way is a long and tedious task: one must derive
intricate equations for each new operator and find the appropriate numerical evaluation
method. Fortunately, in the case of skinning, only C 1 continuity is required for composi-
tion operators. This enables us to propose a simpler and more general way of constructing
C 1 operators g directly into a discrete grid.

Our solution is to use bi-harmonic interpolation of some constraints: that is, the func-
tion g must satisfy the fourth-order bi-Laplacian equation∆2 g = 0, where∆ is the Lapla-
cian differential operator, while matching constraints at specific input values, as those listed
in the previous section. This choice ensures a minimal continuity of order C 1. We directly
solve this partial differential equation for each 2D slice ( f1, f2) of the grid using a standard
finite difference discretization. We use Dirichlet constraints [Olv13] on the system bound-
aries, i.e. we preset values of g at the boundaries. The grid boundaries constraints are
set according to the specific boundary properties of composition operators expressed by
Canezin et al. [CGB13] (Equation 4.3) and inner grid constraints are placed along the pro-
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file curve defining the 0.5 iso-curve of g ( f1, f2) (Equation 4.4). Formally, we set:

g ( f1, 0) = f1 , g (0, f2) = f2 , g ( f1, 1) = g (1, f2) = 1, (4.3)

and

g ( f1, f2) = 0.5 ∀( f1, f2) ∈ profile curve. (4.4)

In addition to these Dirichlet boundary conditions, the normal derivatives have to be con-
strained to zero on the g ( f1, 0) and g (0, f2) axes to ensure a C 1 continuity at the boundaries
of g .

Even though bi-harmonic interpolation does not guarantee the monotonicity of the
function variation between constraints, we found the practical results satisfactory in our
case without having to resort to more involved quadratic programming solvers [JBPS11,
JWS12].

Our different operators are thus generated by constraining g = 0.5 along a profile
curve. For the contact operator gdc

, the profile curve is composed of three line segments
(in purple, yellow and green in Figure 4.7). The purple and yellow lines defined as the lin-
ear interpolation of the points (0,0.5), (0.5,0.5) and (0.5,0.5), (0.5,0) are fixed in all slices
( f1, f2) ∀d ∈ [0,1]. The green line is the linear interpolation of the points (0.5,0.5) and
(0.5+ dp

2
, 0.5+ dp

2
).

Aside from the operator gdc
, the profile curve is in general not aligned with grid vertices

(e.g., bulge operator). We constrain the grid vertices of the intersected grid cells with the
shortest signed distance to the profile curve.

The bulge-in-contact operator gdb
is constructed following exactly the same procedure

(see Figure 4.8). The only difference are the purple and yellow profile curves that are defined
with cubic B-splines whose control points are interpolated with respect to db , between
an aligned position when db = 0 and the maximal bulge when db = 1. The number and
positions of control points can be customized by the user to obtain the desired bulge shape.
To expose less parameters to the user, we fixed the control points: (0,0.5), (0.15,0.45),
(0.39,0.40) (0.44,0.44) and (0.5,0.5) which showed satisfactory results on the finger joints.

Using this evaluation procedure, our composition operators are pre-computed once for
all in 3D grids and at run time, a simple texture fetch is required for each evaluation. More
generally, this approach enables the design of free-form composition operators: one only
needs to specify a profile curve to generate a new operator.
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4.6 Iso-value tracking

4.6.1 Overview

The tracking algorithm aims at driving the character deformations given the previously
built field-function f . The algorithm projects vertices onto the field f . As the implicit
surface may model skin contacts in the folds of the limbs or other effects such as bulges,
the projection step will ensure the deformation captures all those effects. In addition, we
must ensure parametric distorsion introduced by the projection step are minimized.

We developed two types of tracking algorithms a history independent and history de-
pendent algorithm. Both algorithms posses their own strength and weakness which we
summarize below.

History independent algorithms are easier to parallelize per frame and fit better to stan-
dard animation pipelines, however, they are prone to flickering since time coherency is
harder to guarantee without knowing the previous and next frame. Such algorithm will
need to deform the mesh only based on its rest pose. In this version [VBG+13] we use a
computationally inexpensive geometric skinning: the dual quaternion skinning [KCvO08].
Once the mesh is deformed with DQS, the field functions fi are rigidly transformed and
the mesh vertices march following the gradient of f (Figure 4.1(f)) until they reach their
original field value, thus producing the final deformation (Figure 4.1(g)).

History dependent algorithms are difficult to parallelize per frame, therefore they are
less straightforward to implement in standard animation pipelines. Nevertheless, such al-
gorithms are usually less prone to flickering and more robust to extreme deformations.
Time dependency leaves more room for realistic effects since the physic of time dependent
phenomena can be simulated. Because we rely on the previous frame information, this ver-
sion [VGB+14] deforms the character without the help of a geometric skinning and avoids
the tedious skinning weights that come with it. Re-projecting the vertices on the implicit
surface f can be achieved the same way we do with the history independent approach. To
guarantee the mesh always comes back to its original shape when the skeleton returns to
its rest pose, we developed a relaxation scheme which globally minimize the parametric
distortions of the mesh while deformed.
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4.6.2 History independent tracking

The history independent version is part of our framework called implicit skinning [VBG+13].
We give a first glimpse of this approach Chapter 1 in Figure 1.2 of our introduction. Note
that additional materials such as a 5 minute video including results and a brief summary can
be found on-line1.

4.6.2.1 Details

During animation, the implicit primitives fi associated with each bone are rigidly trans-
formed and combined as explained in the previous section, resulting in a time-dependent
global field f . Directly deforming the mesh by tracking the 0.5-isosurface using the field
function derivatives [SS11] would result in a smooth distorted mesh after several trans-
formations. Our approach is rather to use the whole region where f is non-zero as an
embedding volume for the mesh, used to control its deformations from a standard geomet-
ric skinning pose. This enables us to have the mesh track the implicit deformations at low
cost, while not losing any surface detail.

Dual quaternions [KCvO08] are used to compute an initial position of the mesh vertices
at each animation step. The challenge then consists in designing a fast projection operator
to correct vertex positions which preserves the details of the mesh at rest, while tracking
the current implicit deformation modeled by f . Our solution makes use of projection in
gradient field directions, tangential relaxation, and local Laplacian smoothing, as detailed
below.

Vertex projection. During deformation, we project each vertex vi back onto its original
iso-value i s oi (with i s oi = f (vi ) in the rest pose), enabling us to account for both the
detailed mesh shape and for the current deformation. This is done using Newton’s method,
which is both faster and more robust than the use of a constant step size for the gradient
descent:

vi← vi−σ ( f (vi)− i s oi )
−∇ f (vi)
‖∇ f (vi)‖2

. (4.5)

Using σ = 0.35 is an effective compromise between speed of convergence and accuracy.
In order to prevent any self-intersection of the final surface (Figure 4.9(a)), as well as to

preserve the regularity of the mesh, the projection has to be stopped at the contact surface
between different skin parts (Figure 4.9(b)). Although f models contact surfaces as the 0.5-

1http://rodolphe-vaillant.fr/permalinks/implicit_skinning_project.php



56

isosurface, this was not the case of our earliest work with implicit skinning [VBG+13]. In
this early work, contact surfaces were modeled in the scalar with gradient discontinuities
since we used the maximum operator to blend the primitives fi . To detect collisions using
the gradient discontinuity we used the following conservative heuristic: during projection,
we keep track of the angle between the gradient at two consecutive iterations, and stop
when it is greater than 55◦, thus considering we are on the contact surface (see Figures 4.1(g)
and 4.9(b)).

(a) (b)

Figure 4.9: Section of the Armadillo’s knee of Figure 4.10 showing the inside part of the
mesh. The blue area is the interior side of the mesh and the clear gray its outside. The white
lines are the mesh boundaries produced by the cut. As we can see in (a), LBS generates self-
intersections in the fold that are converted in (b) into a contact region using our projection.

In our more recent work [VGB+14]we show it is more robust to model contact surfaces
with the 0.5-isosurface as detailed section 4.5. In this case, detecting the gradient discontinu-
ity performs as well and give similar results. Alternatively, when the contact iso surface is
properly modeled, we found we can stop vertives when we detect a change of monotonicity
in the scalar-field while marching.

Tangential relaxation. Since the initial vertex positions provided by geometric skinning
might be far away from their final position, simply using the previous method could intro-
duce high distortions of mesh faces, and at the extreme cause self-intersections. In order
to both minimize them and improve the march of the vertices in the gradient field, we
interleave projection steps with tangential relaxation steps, which move each vertex to-
wards the weighted centroid of its neighbours. More precisely, given a vertex vi , let qi , j be
its one-ring neighbors projected onto its tangent plane. As a preprocess, we compute the
barycentric coordinates Φi , j such that vi =

∑

j Φi , j qi , j , using the mean value coordinate
technique [HF06]. Each relaxation step moves the vertices tangentially to the local surface
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using:

vi ← (1−µ)vi +µ
∑

j

Φi , j qi , j , (4.6)

where µ ∈ [0,1] controls the amount of relaxation. While by construction, this has no
effect on the rest pose, it improves the distribution of the vertices after deformation. A
relaxation step is applied after each pair of vertex projection steps with an adjusted value
of µ, such that the displacement of the vertices decreases with the distance to their target
isosurface. This is done by setting:

µ=max
�

0,1− (| f (vi )− i s oi | − 1)4
�

. (4.7)

(a) (b) (c) (d)

Figure 4.10: Animation of the Armadillo’s knee (a). (b) The result of the projection without
smoothing. (c) In red, the smoothed area where βi > 0 and (d) the result after a few steps
of Laplacian smoothing.

Laplacian smoothing. Even though we assume smooth inputs, a deformation performed
by the max operator (union) or our gradient-based contact operator (Figure 4.7) will intro-
duce sharp features at the boundaries of contact regions (Figure 4.10(b)). The latter should
be smoothed out in order to mimic realistic skin deformations. We remove these high fre-
quencies by locally applying Laplacian smoothing to the final mesh, at and around contact
regions:

vi ← (1−βi )vi +βi ṽi , (4.8)

where ṽi is the centroid of the one-ring neighborhood of vi , andβi controls the amount of
smoothing. This is only done for mesh vertices marked as in contact regions, so that surface
details are preserved elsewhere. To this end, we setβi to 1 for vertices stopped at a gradient
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discontinuity, and to 0 for the others, and smooth theβi values over the mesh by diffusion,
prior to applying Laplacian smoothing (Figure 4.10(c)). As illustrated in Figure 4.10(d),
this effectively smoothes out the mesh oscillations at sharp features, resulting in organic-
looking shapes. Note that this smoothing step has to be performed after the projection step.
Therefore it cannot be combined with the relaxation that is interleaved with projection
during the march of the mesh vertices.

4.6.2.2 Implementation and results

vertices bones memory 1 joint animation
DQS Implicit Skinning

Hand 31,750 21 10.5 35 95 15
Armadillo 172,974 23 11.5 36 87 3

Juna 32,056 55 22.5 86 340 15
Dana 4,164 67 32.5 270 > 800 95
Carl 6,866 67 32.5 300 > 800 68

Table 4.1: Implicit skinning benchmarks [VBG+13]. For each model, from left to right:
the number of vertices, the number of skeleton bones, the memory consumption for the
storage of HRBFs in MB, the frame rates in fps when animating a single joint using our
technique, and the frame rates in fps when moving simultaneously most bones in a real
animation (poses are shown in Figure 4.11) with dual quaternions and our technique.

Implementation. All our results were generated on a Intel Core i7 3770K at 3.5GHz,
with 16GB of memory and a Geforce 680. Our CUDA implementation makes extensive
use of GPU parallelism. In particular dual quaternion skinning, projection, tangential re-
laxation and localized Laplacian smoothing are all parallelized over the vertices. The in-
dividual field functions (Section 4.4) and composition operators (Section 4.5) being both
compactly supported, are respectively sampled into 3D textures of resolution 323 (com-
puted from the HRBF equation in 15 ms) and 1283 with trilinear interpolation, leading to
very fast evaluations of f and gk on the GPU. Our models are composed of 20 to 70 bones,
requiring 10Mb to 35Mb of memory for storing the field functions (Table 4.1).

The performances of the implicit skinning method [VBG+13] for animating the differ-
ent models are summarized in Table 4.1. The frame rates only stand for the deformation
time. As we can see, the performance of our technique mainly depends on the number
of deformed mesh vertices that are to be projected on the implicit surface. However, the
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parallel implementation performed on recent GPUs allows us to animate simultaneously
most bones of models composed of thousands of vertices at more than 60 fps and models
composed of tens of thousands of vertices at more than 12 fps (examples of animation poses
are shown in Figures 4.12 and 4.11). Even highly detailed models composed of more than
170,000 vertices are still animated at several fps.

Figure 4.11: Different models skinned with implicit skinning [VBG+13]. Number of bones
and vertices, memory and frame rates are given in Table 4.1.

Deformations. We illustrate the use of implicit skinning [VBG+13] with different com-
position operators, and on several models and poses (Figure 4.11). The union operator is
used for the fingers joints in Figure 1.2(c) and the Dana model in Figure 4.12. It allows us to
correct the “elbow collapse” effects of the LBS as well as the smooth outgrowth produced
by dual quaternions. It also nicely captures the aspect of a solid bone at joints with, inside
the bent region, a contact between skin parts as illustrated in Figures 4.12. At bone joints,
this makes our approach closer to real skin deformation than other real-time skinning tech-
niques.

Finally, the bulge-in-contact operator can be used to mimic the tissues/fat bulging when
fingers bend. This is illustrated in Figure 1.2(d) on phalanx deformations during the hand
animation. In all these animations, smooth deformations and contact are adequately gen-
erated while the mesh details are preserved, as illustrated on the Armadillo in Figure 4.11,
its thigh and calf in Figure 4.10 and on Juna’s shoulder in Figure 4.13(c).

Our technique also addresses the candy wrapper effect when bones twist. This is illus-
trated on a twisted cylinder in Figure 4.14 where we can see that the deformation is ade-
quately corrected with our operators, even when the bones bend. We illustrate our result
in Figure 4.14(c).
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Linear blending Dual quaternions Implicit skinning
(a)

(b) (c) (d)

Figure 4.12: Dana model in a break-dance pose. (a) From left to right, the model is deformed
with LBS, dual quaternions and our technique. Note the very smooth deformation with
visible loss of volume produced by the LBS (left). (b) Close-up on Dana’s knee deformed
with dual quaternions and (c) after correction with our method using the union operator.
(d) The difference is shown by superposing the two surfaces in (b) and (c). [VBG+13]

Parameters and shape control. The parameter settings given for implicit skinning allow
the automatic production of results. The parameters used by our method are: the num-

(b) (c)

Figure 4.13: Skinning of the Juna model shown in (a). Dual quaternion skinning (left) vs
our skinning with gradient-based blending (right) on (b,c) two poses of the shoulder. (b)
While geometric skinning produces self intersections, implicit skinning [VBG+13] gener-
ates the contact and keep it farther from the joint. (c) Shoulders details are smoothed by
geometric skinning and well preserved by our method.
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ber of sub-mesh vertices used as HRBF centers for fitting implicit surfaces; the location of
closure points (Section 4.4); the choices of the composition operators; the shape of the asso-
ciated function d (α)when gradient-based composition operators are used (Section 4.5); and
finallyσ andµ that respectively set the step size of the vertices displacements in the gradient
direction and the strength of the tangential relaxation during projection (Section 4.6.2.1).

If not considering the composition operator that is left as a free parameter able to per-
form a union or a bulge-in-contact, the deformation is controlled by preset parameters. In
our technique, the resulting shape is not very sensitive to a slight variation of these param-
eter values and modifications are predictable. Thanks to the interactive feedback provided
by our method, we could easily set these parameter values experimentally in interactive
sessions, as illustrated in the accompanying video of implicit skinning [VBG+13] with the
adjustment of the bulge size for a finger. Also, when reconstructing the mesh with implicit
surfaces, we are seeking for a smooth approximation of mesh parts, independently from
the part size and geometry. Fifty to one hundred samples were sufficient for all our mod-
els, which are of different resolution and include different levels of detail. Automatically
modulating this number according to some given approximation error may however be a
useful extension.

In our tests, complex joints such as shoulders may require the user to add or remove a
few sample points used as HRBF centers at the vicinity of the joint and slightly adjust the
closure point location. Here, the number of points to be added or removed mainly depends
on the coherency of the input partitioning solution (Figure 4.1(c)). In the implicit skinning

(a) (b) (c)

Figure 4.14: Illustration of implicit skinning for modeling smooth skin surfaces at joints
(new gradient-based contact operator), when the bones respectively twist (top row), or twist
and bend (bottom row). (a) LBS, (b) dual quaternions, (c) our technique with gradient-based
composition.
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framework, this action is again performed with real-time feedback.
By default, the composition operator is set to the union for all the model bone joints, as

was done for the Dana model (Figure 4.12). The result is already a more plausible deforma-
tion than the one provided by LBS, dual-quaternions or the more recent elasticity-inspired
deformer [KS12] thanks to the rigid bone aspect generated outside the fold and to the con-
tact produced inside. The deformation can then benefit from the gradient-based contact
operator at elbows, shoulders and knees, or from the bulge-in-contact operator at fingers.
These pre-set operators are provided to the user: he only has to select among a list of de-
formations for each joint, for instance, a sharp deformation with the union operator or a
bulging deformation with the bulges-in-contact operator.

4.6.2.3 Discussion and limitations

(a) (b) (c) (d)

Figure 4.15: The field of a bent cylinder, reconstructed with a union operator. In red, the
part inside the 0.5-isosurface, and in blue the outside. The mesh is shown in transparency.
(a) The mesh deformed using dual quaternions is (b) adequately corrected by implicit skin-
ning [VBG+13]. However, (c) the mesh deformed with LBS, has sets of vertices crossing
each other, and located beyond the bones. (d) It leads to many projections in the wrong
direction where our method fails.

Influence of the initial geometric skinning solution. At each animation step, the mesh
is first deformed using a standard geometric skinning, before being corrected through the
projection of its vertices to the adequate isosurfaces. Therefore, the quality of our results
is affected by the choice of the initial skinning solution. In particular, our correction gives
better results if the diffusion of the bone influences is large enough to produce a smooth
initial deformation. The geometric skinning used should also avoid the apparition of deep
self-intersections which would send some mesh vertices beyond the bones. In that case,
these vertices would be projected on the opposite surface, as illustrated with the union
operator in Figure 4.15. We can observe smooth dual quaternion skinning deformations,
enable an adequate correction (Figure 4.15 (a) and (b)), while the input LBS deformations
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generate deep self-intersections (Figure 4.15 (c) and (d)), causing a failure of our method.
Also, in extreme poses, even though contact is handled, the deformation may be inaccu-
rately corrected: some mesh vertices may cross a contact and be stopped, while they were
supposed to be projected on the visible skin part, outside the fold.

Smooth skin parts. The neck of a giraffe, the elephant’s trunk or the arms of an octo-
pus smoothly deform when they are animated. This effect is not handled by our method
which focuses on more rigid bone-like joints. In this case, the smoothing property of LBS
near a joint, usually seen as an artifact, may produce a result closer to the expected shape.
Alternatively a curved-based skining method may be more appropriate.

Time independence. At each animation step, the initial mesh vertex positions are com-
puted from the rest pose after a geometric skinning deformation. Therefore, the final vertex
positions at a given animation step do not depend on their positions at the previous step.
The consequences are two-fold. On the one hand, the solution might be subject to flicker-
ing. In practice, as soon as the mesh resolution is dense enough to capture the local shape
at joints, the continuity in time of the initial solution computed with geometric skinning
coupled with the smoothness of the field functions prevent this effect. On the other hand,
this eases the integration of our approach in standard animation pipelines where frames are
computed in parallel.

Mesh resolution. As mentioned in the previous paragraph, the mesh resolution should
be dense enough to capture features like contact, blend or bulge. When the mesh has a
too coarse resolution, a very few vertices lie on the different features introduced by our
skinning technique at joints. Thus, they are not appropriately represented and the relax-
ation followed by the local smoothing (at the end of the projection) are likely to degrade
the vertices distribution, especially if the mesh is very irregular. This can make the mesh
deformation unrealistic and discontinuous in time.

4.6.2.4 Summary

We presented implicit skinning [VBG+13] an approach for skinning virtual characters,
which operates in real-time. Based on the embedding of the skin mesh into a deformable
implicit volume, made of parts rigidly attached to each bone, it does not suffer from the
loss of volume inherent to standard geometric skinning methods. Choosing the way the
implicit parts are combined enables us to generate contact surfaces between neighboring



64

skin parts, and to drive organic bulging effects. As a result, our approach achieves visually
plausible deformations of the different joints in a character’s body, even for large bending
angles. Since no optimization or collision processing steps are required, our approach is
robust and efficient. Lastly, computations being independent from one frame to the next,
the method perfectly fits into standard animation pipelines.
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(a) (b) (c) (d) (e)

Figure 4.16: (a) The Jeff model in rest pose. Its shoulders are rotated and skinned with
(b) implicit skinning [VBG+13] which locally deforms the mesh according to some pre-
set weights and (c) elastic implicit skinning [VGB+14] which automatically produces a
plausible skin elasticity (notice how the belly button stretches). On the right, the Dana’s
knee is bent with an extreme rotation angle. (d) Implicit Skinning fails to handle deep
self-intersections while (e) elastic implicit skinning allows large bending angles and the self-
intersection at the knee is handled correctly.

4.6.3 History dependent tracking

We published elastic implicit skinning [VGB+14] a history dependent version which is a
more robust alternative to the implicit skinning [VBG+13]. We give a first peek of this
approach Figure 4.16. This version introduced more advanced and more flexible blending
operators (presented in Section 4). In addition, a new tracking algorithm which avoids the
need for a geometric skinning was presented. Note that additional materials such as a 5
minute video including results and a brief summary can be found on-line2.

The main goal of elastic implicit skinning was to get rid of the shortcomings present
in the previous implicit skinning algorithm, most of the problems came from the need
of an initial solution (i.e. dual quaternion skinning) for the vertex position. This meant,
we had to rely on skinning weights and their tedious definition. For large bending angles,
implicit skinning could not properly project the vertices of the initial solution (Figure 4.16
(c)). In addition, mesh distortions introduced by the initial solution were not sufficiently
minimized (Figure 4.16 (b)).

By designing a history dependent tracking algorithm we were able to avoid the need
for an intial solution. Our tracking method is based on a linear relaxation energy (inspired
from the as-rigid-as-possible energy) and updates the skin mesh with a plausible tangential
distribution of vertices, as shown in Figures 4.16(c) and 4.2(c) This provides more automa-

2http://rodolphe-vaillant.fr/permalinks/elastic_implicit_skinning_project.php
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tion and robustness than implicit skinning while still being applicable at interactive frame-
rates. The solution presented in this section captures skin contact and elasticity, as well as
muscle inflation and skin sliding effects.

4.6.3.1 Details

(a) (b) (c)

Figure 4.17: (a) (b) (c) We illustrate one step of our animation algorithm During animation,
(a) the deformed mesh parts at an initial step n (b) are rigidly transformed at the step n+1.
Then, vertices are projected onto their own iso-value f (v) (red arrows) and tangentially
relaxed (blue arrows). (c) The final result with the contact surface illustrated on the mesh
and in grey in the implicit skin.

One of the main challenge of our general implicit-skinning approach is to ensure that
the initial mesh properly follows the iso-surface defined by the time-varying global scalar
field f . Even though f is usually obtained through the composition of implicit primitives
fi which are rigidly transformed, the underlying implicit skin exhibits severe non-linear de-
formations around the joints. User defined non-linear deformations might also be applied
to the fi to mimic some complex effects (see section 4.6.3.2). Moreover, in our context the
mesh embeds many spatially varying data such as relief details and texture layers. There-
fore, the topology and density of the mesh cannot be arbitrarily changed, and each vertex
must carefully track its position on the implicit surface to avoid unnatural distortions.

To this end, we propose to track the iso-surface incrementally from one animation step
to the next using a three stage procedure:

1. Each vertex is moved by applying the transformation difference of its nearest bone,
as defined by the initial mesh partitioning (Figure 4.17 (b)).

2. Vertices are projected onto their respective iso-value (derived from the rest pose)
along the gradient direction using Newton iterations.
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3. This yields a good initial guess on which we can apply a tangential relaxation scheme
to account for the stretch of the implicit skin while reducing distortions.

Since stages one and two are already described in the implicit skinning section 4.6.2, the
rest of this section focuses on the last stage.

Tangential relaxation energy The relaxation scheme must reduce the distortions while
maintaining the mesh on the underlying surface. Because an accurate physical simulation
of the skin would be prohibitively expensive, we seek the simplest and fastest relaxation
scheme able to track the implicit skin robustly. Among our various attempts, our first test
was to make use of the relaxation scheme from the implicit skinning method (i.e. based
on mean value coordinate). Experiments showed when applying implicit skinning incre-
mentally, this relaxation scheme would not preserve triangle areas. As a result, the track-
ing would fail due to large stretching of the mesh even for moderate bending angles. We
thus derived a novel relaxation scheme inspired by Sorkine et al. [SA07] as-rigid-as-possible
(ARAP) energy:

E({p̂i}) =
n
∑

i=1

∑

j∈N (i)
wi j‖(p̂i − p̂ j )−Ri (pi −p j )‖

2 , (4.9)

where pi are the vertex positions in rest pose, p̂i are the unknown final positions, Ri is a
3×3 rotation matrix, andN (i) denotes the one-ring neighborhood of vertex i . The weights
wi j are classically defined from the cotangent formula [MDSB02], i.e., wi j =

1
2 (cot(αi j ) +

cot(βi j )), where αi j , βi j are the angles opposite to the edge (i , j ).
As motivated and detailed below, in our relaxation scheme the rotations Ri are pre-

scribed a priori taking advantage of the specificity of skinning deformations. Indeed, the
energy E is by construction invariant to translation while the rotation Ri locally cancels
rigid transformations. In most applications of this kind of energy, including iso-surface
tracking [BN07], Ri is computed from the polar decomposition of the Jacobian of the
unknown deformation. In addition to being an expensive process, this strategy exhibits
several drawbacks. Firstly, this inserts a non-linear component in the energy, E which thus
requires additional iterations to be minimized while introducing local minima. In addition,
as illustrated in Figure 4.18(a,b), there is no smoothness constraints on the target rotations
Ri and the result is only C 0 at the constraint boundaries. Moreover, we observed during
animation that vertices appear to slide over the implicit skin instead of behaving as if the
skin had elasticity, resulting in an unrealistic animation of the skin.
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Finally, as depicted in Figure 4.18(d), this strategy is well known to be subject to triangle
inversions which are very tedious to avoid, even on a planar domain [SKPSH13].

(d) (e)
(c)

(b)

(a)

Figure 4.18: Standard ARAP energy: (a), (b) and (d) are compared to our dual-quaternion
based rotation targets (c) and (e). In (a) only the extremities of the tube are fixed while in
(b) a larger part is fixed. Both cases lead to C 0 deformations on the constraints with an
unplausible distribution of vertices inside the domain. In (d) triangle inversions occurred.
In (c) and (e) these problems are avoided and our technique produces an adequate result.

We address all these drawbacks by fixing a priori the target rotations Ri . In order to
leverage a coherent behavior over time and to recover the rest-pose, these rotations must
not depend on the positions of the mesh vertices of the current animation step but only on
the rest pose and affine transformations of the bones.

Following the first stage of our tracking procedure, a first choice consists of using the
rotation associated with the nearest bone of vertex i for Ri . As illustrated in the first row of
Figure 4.21, this strategy yields promising results despite the discontinuous nature of the un-
derlying rotation field. An effective solution thus consists of performing a blend of the bone
transformations as in standard geometric skinning methods. In this research we use the
dual-quaternion interpolation scheme [KCvO08] with default harmonic weights [BP07].
As discussed in more details in Section 4.6.3.2 and illustrated in Figure 4.21, we emphasize
that both the choice of the blending technique and weights have only subtle effects on the
final distribution of the vertices, and they do not affect the final shape or robustness of
the tracking. Figures 4.18(c,e) show the superiority of our approach that better localize
continuous tangential deformations and prevents triangle inversions.
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On-surface constraints The energy E has to be minimized while maintaining the ver-
tices to their own field value. This is a non-linear constraint which implies an iterative
scheme in which p̂i is obtained through a sequence p̂0

i , p̂
1
i , . . . , where p̂0

i corresponds to the
initial projection onto its respective iso-value, as obtained through the aforementioned sec-
ond stage of the tracking system. At each iteration of the minimization, we first locally
linearize this constraint by enforcing each vertex to lie on its respective current tangent
plane. This can be accomplished by writing the unknown position p̂k+1

i as:

p̂k+1
i = p̂k

i +
�

uk
i vk

i

�

�

uk+1
i

vk+1
i

�

, (4.10)

where uk
i , vk

i are two arbitrary tangent vectors of the current iso-surface at p̂k
i , and uk+1

i ,
vk+1

i are the 2D coordinates of p̂k+1
i in this local frame. Minimizing E under this constraint

is still a linear and very sparse problem. Since there is no need to completely solve this
problem before projecting the solution on the surface and iterating, we interleave one Jacobi
iteration minimizing E with one Newton iteration projecting p̂k+1

i onto its respective field
value. At each iteration, an approximation of the local tangent frame is obtained for free
from the gradient computed during the Newton iteration.

The choice for Jacobi iterations is motivated by its simplicity to be parallelized on the
GPU. Higher performance may be achieved using the conjugate-gradient method which
can also be efficiently implemented on GPUs [WBS+13]. In order to guarantee the avail-
ability of a very good initial guess p̂0

i and to avoid projection issues, the skeleton animation
between two successive frames is decomposed into several virtual frames such that the max-
imal rotation angle of a bone is smaller than a third of the current bending angle. The inter-
mediate skeleton configurations are linearly interpolated. Such a decomposition has little
impact on the performance because a smaller animation step leads to a faster convergence.

4.6.3.2 Implementation and results

Similar to our earliest version implicit skinning [VBG+13], the deformation part of our
elastic implicit skinning system [VGB+14] is entirely executed on the GPU using CUDA.
Parallelization is performed on a per-vertex basis with one kernel responsible for the com-
putation of the initial guesses (rigid transformations and Newton projections) and a second
kernel performing one iteration of the minimization (one Jacobi iteration, plus one New-
ton projection). This second kernel is applied multiple times per animation step until con-
vergence. As previously done, we accelerate the evaluation of the scalar field f , the scalar
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#vertices #bones
time step #Jacobi full Imp

(rad) iterations animation skinning
Hand 31.7k 21 0.5 600 650ms 83ms
Hand 31.7k 21 0.05 330 220ms 83ms

Armadillo 16.4k 43 0.05 170 70ms 23ms
Jeff 13.3k 45 0.5 300 100ms 30ms
Jeff 13.3k 45 0.05 100 50ms 30ms
Jeff 13.3k 45 0.005 10 24ms 20ms

Table 4.2: Statistics and performance of elastic implicit skinning [VGB+14] and implicit
skinning [VBG+13] for various models and time steps when all joints are animated simul-
taneously.

fields fi by indexing them in a 323 grid. Both our composition operators gk and scalar fields
fi are stored in 3D textures and evaluated using hardware trilinear interpolation.

Results were produced on an Intel Core i5-3570K at 3.4GHz, with 8GB of memory
and a Geforce 670 GTX. The memory consumption is exactly the same as for the implicit
skinning method: for the models presented in this section, from 10 to 30MB of extra tex-
ture memory are required to store the operators and field functions. During an interactive
session, joints are usually adjusted one at a time. In this case, deformations occur mostly
locally: only a small fraction of vertices have to be projected and relaxed, hence the den-
sity of the mesh has a small impact on performance. For a single joint, we thus observed a
rate between 30 to 300 frames per second. More detailed statistics and performance results
are given in Table 4.2 for complete animations and different time steps. As expected, the
number of minimization iterations and thus the computation time highly depends on the
magnitude of the skeleton transformation between two animation steps.

Provided a mesh with an animation skeleton, our system automatically produces a de-
fault solution: partitioning and field-functions fi are computed automatically as described
by Vaillant et al. [VBG+13], and skin elasticity and self-contacts are automatically and glob-
ally resolved during the animation.

As demonstrated in Figure 4.19, elastic implicit skinning produces satisfactory behavior
without requiring any tedious tuning of skinning weights, while previous work still exhibit
distortions even after an artist edits the weights manually. The sensitivity of our method
with respect to skinning weights is further evaluated and compared on a simpler configura-
tion in Figure 4.21. Recall that in our system such weights are only used to blend the target
rotation in the minimization of our tangential energy. Therefore, even large changes in the
weights leads only to small differences in the distribution of the vertices, and the shape of
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Dual Quaternion Skinning Implicit Skinning Elastic Implicit Skinning

Figure 4.19: Comparison of different skinning method using manually edited skinning
weights (top), and automatic weights (bottom).

the implicit skin remains unchanged. In contrast, the projection method of the implicit
skinning technique fails if the weights are not smooth enough, hence, further editing of the
skinning weights is often needed.

(a) Implicit Skinning using (b) Implicit Skinning using (c) Elastic implicit skinning
a standard union (max) union with contact

Figure 4.20: (a) Without proper modeling of the surface contact, vertices tend to be pro-
jected towards the exterior of the contact region thus leading to incorrect projections. Note
that this is especially true for skinning weights produce not smooth enough deformations.
(b) Our operators address this precise issue, unfortunately, tracking with implicit skinning
arbitrarily extends the contact region in an uncontrollable manner. (c) Elastic implicit skin-
ning adequately tracks the skin fold.
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Figure 4.21: Comparison of the sensitivity of the vertex distribution regarding variations
of skinning weights (shown in color code) for the implicit skinning (top row) and elastic
implicit skinning (bottom row). From left to right, skinning weights are rigid, smooth and
smoother respectively.

The global nature of the skin sliding effect produced by our tangential relaxation is
especially visible on the character’s belly of Figure 4.16-left. In contrast to geometric or
implicit skinning, with elastic implicit skinning the belly button is stretched as the torso
twists. As shown in Figure 4.22-top, this skin elasticity can be easily controlled by painting
regions where the tangential relaxation is not wanted. In such regions, vertices are only
rigidly transformed according to their nearest bone.

(a) (b) (c) (d)

Figure 4.22: The Armadillo’s knee (a) is bent using (b) our default solution with tangential
relaxation applied everywhere, and (c) by disabling the relaxation for red areas. (d) Global
self-contact between the belly and the leg.
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Global contacts can be observed in Figures 4.22(d) and 4.25. The shape of the defor-
mation can also be adjusted by choosing between different types of composition operator
to enable, for instance, subtle bulge in contact where this is desired as on the finger of Fig-
ure 4.24. More advanced deformations can also be performed by designing and controlling
additional field functions. For instance, in Figure 4.23 the user added an extra implicit
primitive with its associated bone to mimic the contraction of a bicep by applying a scal-
ing proportional to the arm bending angle. Such a manipulation would not be possible
without a proper tracking system taking care of the skin elasticity and contacts.

(c)

(a)

(b)

Figure 4.23: Reproduction of the inflation of a bicep by the addition of an extra primitive
(a) and its animation using our system (b). Owing to the prominent shape of the muscles,
implicit skinning yields projection artifacts (c).

In addition to all these novel possibilities, our system enables us to reach extreme bend-
ing angle without introducing artifacts. This can be seen in Figure 4.16(e) for a bending
angle around 150 degrees. This high robustness is due to the combination of both a proper
modeling of surface contacts and the incremental nature of our novel surface tracking mech-
anism. Figure 4.20(a) shows that with a standard union operator, implicit skinning exhibits
artifacts if it is implemented with skinning weights that are not smooth enough. In Fig-
ure 4.20(b) our novel contact operator, used alone in implicit skinning (i.e., without elastic
implicit skinning tracking system), improves the projection artifacts but does not reduce
mesh distortions. Finally, our novel tracking algorithm (Figure 4.20(c)) enables even larger
bending angles, a proper tracking of the fold depth and a reduction of mesh distortions.



74

DQS Elastic implicit skinning Elastic implicit skinning Implicit skinning
with default contact operator with bulge and contact with bulge

Figure 4.24: Comparison of: dual quaternion skinning, elastic implicit skinning (without
bulge and with bulge) and implicit skinning with bulge.

4.6.3.3 Limitations

Owing to the incremental nature of our tracking technique, our approach gets closer to a
physical simulation of the skin than the original implicit skinning method. Even though
our approach is considerably simpler and faster than physical simulations, it still has some
of their drawbacks. Firstly, the result for a given animation step is not entirely determined
by the skeleton pose. Because of the non-linearity introduced by the projections on the
implicit skin the result might depend on the complete history of the animation. For a sim-
ilar reason, the result might also depend on the chosen time step. As with any simulation,
choosing the right time step is a trade-off between the computation cost and the numerical
stability: a very large time step will lead to very poor initial guesses with similar problems
as implicit skinning, while a very small time step will be prohibitively expensive.

In practice, as long as no incorrect projection occurs during animation, our solution
is almost insensitive to a particular time step. The automatic solution proposed in Sec-
tion 4.6.3.1 to choose an appropriate time step strives to make sure that the initial guess
obtained through rigid transformation of the previous animation-step does not lead to a
projection in the wrong direction. The proposed solution is rather conservative as, for
instance, we observed that bending an arm from a fully open to a π/2 angle in a single
time-step is correctly handled by our tracking system. Higher performance could thus be
achieved by relaxing the proposed heuristic. An implementation could also use large time
steps, and dynamically subdivide the animation when incorrect projections or triangle in-
versions are detected.
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Implicit Skinning Elastic Implicit Skinning

Figure 4.25: Comparison of our system to implicit skinning on the model shown in rest
pose in Figure 4.16-(a). The arm collides too deeply with the belly to be properly recovered
by implicit skinning while the chin is unrealistically creased. These issues are properly
addressed by elastic implicit skinning.

4.6.3.4 Summary

In this section, we have presented the elastic implicit skinning [VGB+14] a technique that
takes advantage of the best features of implicit skinning, and makes the method more ro-
bust and suitable for production pipelines. We showed the importance of properly mod-
eling and controlling contact surfaces using advanced implicit composition operators. We
also showed how to track a deformable implicit surface by deriving a linearized relaxation
energy from Sorkine et al.’s as-rigid-as-possible energy with some a priori knowledge on
the expected deformation that we can extract from the animation skeleton. As a result, our
skinning system is robust, handles contact even when surfaces are deeply inter-penetrating,
and maintains a plausible solution where implicit skinning fails. The method thus reduces
the amount of necessary user interaction, while maintaining interactive performance, and
enables new features such as skin elasticity.
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Chapter 5

Conclusion

In this disertation we explored the joint use of mesh and implicit surface representation in
the context of character skinning. We described a novel skinning framework which core
idea is to embed a mesh character into a deformable volume, this volume is represented with
several scalar fields composed together. We were able to harness the strength of implicit
surfaces to produce enhanced deformations of the mesh in real-time. Our deformation
includes: skin contact at joints and colliding limbs, skin bulge (e.g. around a bent joint),
muscle bulge and skin elasticity.

We divided our framework into three stages: reconstruction, composition and track-
ing. The reconstruction is responsible for the correct embedding of the mesh into the
deformable volume. Composition enables us to introduce advanced deformations such as
bulges and contact areas. As for the tracking, it is here to make sure the integrity and de-
tails of the mesh are presevered while the deformations of the implicit skin are correctly
captured by the mesh.

This work open the door to many different avenues. In the future, we would like to
investigate more advanced field combination schemes to model a wider set of deforma-
tions. For instance, a hand pushing on the belly should produce a hollow larger than the
hand while the hand itself would barely deform. It means we have to define the softness of
individual implicit surfaces, this may requires to extend the binary gradient-based compo-
sition operators to n-ary compositions. Inspired by the work of Rohmer et al. [RHC09]
and Barthe et al. [BGC01], implicit skinning could be directly tuned from profile curves
sketched by the user, and depicting the desired skin shape. These profiles curves, possi-
bly including wrinkles such as those that appear when a wrist articulates, would drive the
generation of specific gradient-based compositions.

It would be very interesting to use the implicit surfaces to drive the skeleton animation
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of the character in addition to its skin deformation. For instance the field values along
contact surfaces could be used, either to output contact forces to be applied to skeleton
bones, or simply to detect that an angular limit is reached at the joint.

Other secondary effects can also use the extra information provided by the implicit
surfaces. For example, cloth simulation could benefit from a dedicated tracking algorithm
preventing intersection with the body. Finally, the more general use of our technique on
deformable dynamic 3D objects is still to be explored.
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