
Modélisation Géométrique

OctreesOctrees
andand

meshesmeshes

Modélisation Géométrique

OutlineOutline
● Octree representation

– Regular octree

– Surface representation / volume representation of a 3D object

● B-Rep models

● Brief history

● Meshes

– Definition and properties

● duality

● closed meshes and 2-Manifold meshes

● Euler formula

– Internal representations

● Representations optimised for memory space

● Representations optimised for mesh exploration

– OpenGL visualization

Modélisation Géométrique

Regular octreeRegular octree
● An octree is a tree data structure in which each internal node has up to eight

children. A regular octree recursively subdivides a cube in eight cubes of equal
size. The leaves of an octree are called « voxels ».

1 2

34

5 6

7

nodes
voxels

Modélisation Géométrique

Adaptative octreeAdaptative octree
● In an adaptative octree, the nodes of the tree can have different lengths so as to

sample space in an heterogeneous way.

1 2

34

5 6

7

nodes
voxels

Modélisation Géométrique

Example on a quadtreeExample on a quadtree
● A quadtree is a tree in which each node has 4 children. It is the 2D equivalent of an octree

– Draw the leaves of the adaptative quadtree representing the object below.

– Write the « tree form » of the quadtree (develop the first node only).

Modélisation Géométrique

Surface representation using an octreeSurface representation using an octree

● Regular Octree : we subdivide until sufficient precision is attained and for each
voxel:

– either the voxel does not intersect the surface: the corresponding leaf is empty (value 0),

– or it does intersect the surface: the corresponding leaf is full(value1).

● Adaptative octree:

– either the node does not intersect the surface : it is an empty leaf,

– or it does intersect the surface : if we have enough precision, it becomes a full leaf. Otherwise, it is
going to get subdivided

Modélisation Géométrique

Volume representation using an octreeVolume representation using an octree

● Regular octree : we subdivide until sufficient precision is attained and for each
voxel:

– either it is inside the object (value 1 for instance)

– either it is outside the object (value -1 for instance),

– or it is on the boundary of the object (value 0).

● Adaptative octree :

– either the node is on the boundary of the object : if we have sufficient precision it
becomes a leaf (with value 0). Otherwise it gets subdivided.

– Or it is inside or outside the object: it becomes either an “inside leaf” or an “outside
leaf”.

Modélisation Géométrique

Octree : +/-Octree : +/-

● Pros:

– Hierarchical representation of an objet : it can be displayed at different resolutions

– Possibility of a volume representation.

– Easy to test the intersection with another object.

– Simple construction and exploration (done recursively)

● Cons:

– Surface visualisation of voxels is problematic.

– Rendering can be costly for complex scenes.

– Expensive to store.

Modélisation Géométrique

B-Rep modelsB-Rep models
● Boundary-Representation

– A model is represented by its boundary

– No notion of volume

– Used to represent solids

–

–

–

–Ordinary B-Rep Solid B-Rep

Modélisation Géométrique

Solid B-RepSolid B-Rep
● Inside / Outside test on an object :

– Even number of intersections : point P is outside the solid

– Odd number of intersections : point P is inside the solid

P P

Modélisation Géométrique

Brief historyBrief history
● 800 years Before Christ Era, Etruscans used to play games using regular dodecahedrons

(12 faces).

• The pythagorians, 450 years BCE, already knew the cube and the
tetrahedron.

• 400 years BCE, Platon discovered the 5 regular polyhedra: the
tetrahedron, the cube, the octahedron, the dodecahedron and the
icosahedron (20 faces).

– In platon's philosophy, each one was associated with an element (the Fire,
the Earth, the Air, the Water and the Universe).

Modélisation Géométrique

Platonic solidsPlatonic solids

Regular polyhedron =

– Convex polyhedron having a circumsphere, whose faces are identical

– All its faces are regular convex polygons

– All its vertices have the same valency (same number of incident edges)

Modélisation Géométrique

MeshesMeshes

Modélisation Géométrique

MeshesMeshes
● Surfaces are represented by polygons.

● Global continuity class is C0 (normals are discontinuous along the edges) .

● They define the geometry and the topology of a surface

• It is a standard structure used in the rendering of 3D
scenes

• Their manipulation and visualization is optimised by
today's graphic cards

Modélisation Géométrique

Topological properties of meshesTopological properties of meshes

● Duality

● Closed mesh and 2-manifold mesh

● Euler formula

Modélisation Géométrique

DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and points are
replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face and connect
two vertices with an edge if the faces they represent in the primal mesh share an edge.

Modélisation Géométrique

DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face
and connect two vertices with an edge if the faces they represent in the primal
mesh share an edge.

Faces are replaced by their center

Modélisation Géométrique

DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face
and connect two vertices with an edge if the faces they represent in the primal
mesh share an edge.

Edges are “flipped”

Modélisation Géométrique

DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face
and connect two vertices with an edge if the faces they represent in the primal
mesh share an edge.

Edges are “flipped”

Modélisation Géométrique

DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face
and connect two vertices with an edge if the faces they represent in the primal
mesh share an edge.

Edges are “flipped”

Modélisation Géométrique

Duality: exampleDuality: example
● Draw the dual mesh of

the following mesh :

● What do you notice at the faces ?

● What about the dual mesh of the dual mesh ?

Modélisation Géométrique

Closed meshClosed mesh

A mesh is a closed mesh if it divides space into two sets of points:

A set inside the mesh

A set outside the mesh

In other words, a closed mesh does not have any border

Modélisation Géométrique

2-manifold2-manifold
● A closed mesh is 2-manifold (or manifold) if the object it represents is

« manufacturable ».

● By definition, a mesh is 2-manifold if the condition below is satisfied:

– Local disc property: at each point of the mesh, we can find a sphere of radiusε>0 such that the
intersection of that sphere and the mesh is homothetic to a circle.

● An open mesh can be 2-manifold. At the border, the intersection between the sphere and
the mesh must be homothetic to a half-circle.

Modélisation Géométrique

Example : manifold / non-manifold ?Example : manifold / non-manifold ?

On triangular meshes:

● An edge shared by more than 2 triangles ?

● A vertex shared by two disjoint sets of triangles ?

● A T-junction (« crack » problem) ?

● A hole in the mesh?

Modélisation Géométrique

Euler formula (1752)Euler formula (1752)
● It is a relation between every entity of the mesh (faces, edges, vertices):

V - E + F = 2 (1-g)

Where V is the number of vertices, E is the number of edges and F is the number of
faces. g is the genus of the object = the number of holes (handles) in a closed mesh.

genus 0 genus 1 genus 2

Modélisation Géométrique

Triangular meshesTriangular meshes

Specific properties from Euler's formula:

V – E + F = 2 (1-g) = c

where c is a constant usually neglectible in front of V, E or F. Thus we can write :

V - E + F = 0

It is difficult to establish a relationship between those entities because an edge is shared
by two triangles. We can introduce the notion of an half-edge. A face is composed of 3
half-edges and an edge is composed of 2 half-edges:

He = 3 F
He = 2 E

F = 2V

He = 6V

Modélisation Géométrique

Exemples: Euler's formulaExemples: Euler's formula
Compute the number of faces F from the number of vertices V, then the average number of

outgoing Half-edges He for each vertex. Then deduce the shape of a regular mesh composed of :

– quads

– hexagons

Modélisation Géométrique

Data structures for meshesData structures for meshes

Choose a representation adapted to the operations we would like to
perform on the mesh :

● Either a compact representation (save memory space)

● Or a representation optimized for mesh exploration

Modélisation Géométrique

Triangles listTriangles list
● For each triangle, we store the coordinates of its 3 vertices

– Naive approach

– 4 bytes per coordinate (a float)

– 9 coordoninates per face

– Number of faces is about twice the number of vertices

● For a mesh composed of V vertices, we thus need
bytes.

x
0
,y

0
,z

0
 x

1
,y

1
,z

1
 x

2
,y

2
,z

2

x
5
,y

5
,z

5
 x

1
,y

1
,z

1
 x

12
,y

12
,z

12

x
9
,y

9
,z

9
 x

0
,y

0
,z

0
 x

1025
,y

1025
,z

1025

 . . .

4×9×2×V =72×V

Modélisation Géométrique

Shared verticesShared vertices
● First we store the vertices list

● Then a triangle is given by the indices of its 3 vertices

● Usually, the file storing the mesh begins with the number of vertices and
the number

Vertices list Triangles list

 x
0
,y

0
,z

0
 0 1 2

 x
1
,y

1
,z

1
 5 1 12

 x
2
,y

2
,z

2
 9 0 1025

How many bytes stored per vertex? (36)

Modélisation Géométrique

Triangle stripsTriangle strips
● Topology is implicitely stored by the order the vertices appear in the file

● Each vertex is explored 2 times (one vertex belongs to 2 strips or
appears twice in a strip)

● If the mesh is defined by a single strip, what is the memory space
occupancy ?

Actually, a mesh is usually composed of many strips and an additionnal
20 bytes is needed for each new strip (storage of the 2 first vertices)

Modélisation Géométrique

Per face structurePer face structure

● Each face has pointers to its vertices and to adjacent faces

● Each vertex has a pointer to one of its faces

● No direct access to the edges

● Bytes per vertex? (64)

Modélisation Géométrique

Per half-edge structurePer half-edge structure

• Each edge is sliced into two half-edges of
opposite directions

• For each half-edge, we store a pointer to the
opposite half-edge, a pointer to the vertex it points to, a pointer to the face it
belongs to, and a pointer to the next half-edge.

● Each vertex has a pointer to one of its outgoing half-edges. Each face has a
pointer to one of its half-edges.

● Very useful to explore a mesh in various ways

● Bytes per vertex ? (120)

Modélisation Géométrique

Visualization of a mesh using OpenGLVisualization of a mesh using OpenGL
● Object construction :

– The list of its vertices GLfloat vertices[] = {x0, y0, z0,

 …

 xn, yn, zn};

– The list of its attributes (normals for instance)

 GLfloat normals[] = {nx0, ny0, nz0,

 …

 nxn, nyn, nzn};

– The list of its indices GLuint index[] = {0, 1, 2,

 5, 0, 4,

 . . . };

Modélisation Géométrique

Visualization of a mesh using openGlVisualization of a mesh using openGl
● Different kinds of primitives:

● GL_TRIANGLES : the indices in the list are considered by groups of 3
elements. Each triplet forms a triangle .

● GL_QUADS : the indices in the list are considered by groups of 4
elements. Each group forms a quad.

● GL_TRIANGLE_STRIP : the indices in the list are considered in their
given order so as to form a triangle strip. In the indices list, it is possible to
use a special value to separate different strips,

● GL_QUAD_STRIP : same, but with quads instead of triangles,
● …

Modélisation Géométrique

OpenGL renderingOpenGL rendering
// Activating rendering mode using vertex arrays

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_NORMAL_ARRAY); // if we want to set the normal for each vertex

glEnableClientState (...); //if we want to set other attributes of the vertices (color...)

// Setting pointers to the different arrays

glVertexPointer (3, GL_FLOAT, 0, sommets);

glNormalPointer (GL_FLOAT, 0, normales); // if we use normals

// … + other possible arrays (color,…)

// Drawing triangles:

glDrawElements (GL_TRIANGLES, nb_index, GL_UNSIGNED_INT, index);

// Deactivating the rendering mode

glDisableClientState (………..);

Modélisation Géométrique

Further optimisationFurther optimisation

● Vertex arrays are a simple way to visualize meshes in OpenGL.

● A most common and efficient way to visualize meshes is to use OpenGL's Vertex Buffer
Objects (VBO). VBOs are vertex arrays stored in the memory of the GPU. Thus their access
from the GPU is faster, hence a faster rendering.

● VBOs will be studied in a next lesson...

Modélisation Géométrique

Normal to a faceNormal to a face
● The normal to a face can be obtained by computing the cross product of two edges

from that face

● When storing a mesh, one has to be careful about normals orientation. The vertices
composing each face must be stored in the same order...

● Normals point to the outside of a closed object. They are needed when computing the
lighting of the object.

1

2

3

1

2

3 S1

S2

S3N

N

N=
S1 S2× S1 S3

∥ S1 S2× S1 S3∥

Modélisation Géométrique

Normal at a vertexNormal at a vertex
● Naive approach: average the normals to the faces that contain the vertex.

● Advanced approach : the sum is ponderated

– For instance, we can set ai as the area of triangle i

● Either way, we obtain an approximation of the normal to the surface at the
vertex

N s= ∑ ai×
N i

f

∥∑ ai×
N i

f∥

N s=∑
N i

f

∥ N i
f∥

Modélisation Géométrique

Tutorial: load a mesh from a fileTutorial: load a mesh from a file
● Write an algorithm to load a mesh from a file. The mesh is stored using the shared vertices

technique.

– The first two values in the file are the number of vertices followed by the number of
faces. The next values are the coordinates of the vertices then the list of the indices.

– The mesh must be loaded so that the data structures used can be used by OpenGL to
display the mesh (Vertex Array).

– We would like to compute the normals at each vertex so that the object can be correctly
lightened

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

