
Differential geometry � Bézier curves

M1 � InternationalM1 � International

Differential GeometryDifferential Geometry
andand

Bézier curvesBézier curves



Differential geometry � Bézier curves

PlanPlan

� Introduction

� Parametric equation of curves

� Parametric equations of a line

� Differential geometry

� Tengent, principal normal, Frénet frame

� Curvature, torsion

� Bézier curves



Differential geometry � Bézier curves

BasicsBasics

� A parametric curve can be seen as the trajectory of a point P moving in space. The parameter 
is then the time t even though any parameter u can be used in practice.

� Note that the point P(x,y,z) has the same coordinates as vector 
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Differential geometry � Bézier curves

DefinitionDefinition

� A parametric curve in the R3 space is defined by a function

� Thus, for each value of parameter u, we compute independently each of the three corrdinates 
x,y, z of the point P(u)

� The same curve can have several different parametric equations (possibly an infinity). 

f : � � �3

u � P �u �={
x �u�= f x �u �

y �u �= f y �u �

z �u�= f z �u �
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ExampleExample

� Parametric equations of a circle in R2 :
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Parametric equation of a lineParametric equation of a line

� Parametric equation of a line in R3 passing by two points P
1
 et P

2
 :

� This equation leads to the notion of linear interpolation. Indeed, when u varies between 0 et 1, 
the point P linearly covers the segment from P

1
 to P

2

u0 1

P
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P
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Parametric equation of a lineParametric equation of a line

� A line can also be defined with a point P
1
 and a vector v :

u0 1

P
1

v

P

P �u �=P1�u v
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Differential geometry : parametersDifferential geometry : parameters

� Random parameter : u 	 [a,b]        curvilinear abscissa : s 	 [0,
]. 

� s is the lenght of curve from the origine to the point P(s):

u=b

p(s)

p(u)

u=a

s=0

s=


p(u+�u)
p(s+�s)
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Tangent vectorTangent vector

� Unit tangent vector :

� Practical computation :

T=
dp

ds
= p ' T= lim

� s� 0

p �s�� s�� p �s�

� s

�p �u�=
dp

du
=T� �p �u ��

p(u)

�p�u�

T= p '
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Principal normal vectorPrincipal normal vector

� The tangent is known. How to define a orthogonal vector with a predictable orientation ?

� Exercise :

� Show that the derivative of a vector with constant norm is orthogonal to that vector :

               we have                                                          show that 

� The principal normal vector N is defined from the derivative of the unit tangent vector :

T

�u :v �u � . v �u�=�v�
2

�v �u��v �u�
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Frénet frameFrénet frame

� It is a local frame in a point on a curve :

� Once the vectors T, N and B evaluated at point a P, the Frénet frame is the frame 
(T,N,B),centered in P.

� (T,N) defines the osculating plane

� (B,T) defines the tangent plane

� (N,B) defines the normal plane

T

N

B

T

N

B



Differential geometry � Bézier curves

Computation of the Frénet frameComputation of the Frénet frame

� Unit tangent vector T and speed vector v :

� Unit binormal vector B and acceleration vector a :

� Principal normal  vector :

� Vector N points in the direction of the center of curvature, thus, when passing an inflexion 
point, the frame « flips ». 

N=B�T

v=
dp

du
= �p=[ dxdu ,

dy

du
,
dz

du ] T= �p

� �p�

a=
d

2
p

du
2
= p̈ B= �p� p̈

� �p� p̈�
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CurvatureCurvature
�

� By definition, the principal normal vector is :

     where k is the curvature in p

where � is the curvature radius

d
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CurvatureCurvature

� Curvature :

� Curvature vector :

� Curvature radius :

� Inflexion point => k=0

� k=0  =>   inflexion point

� Exercise

� Show that expressions  (1) and (2) correspond.
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TorsionTorsion

� Torsion vector :

� Torsion : it is defined from the variation of the binormal vector.

� If the torsion is zero over the curve, the curve is planar.

�=
�p . � p̈��p �
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Affine combination of pointsAffine combination of points
andand

parametric curvesparametric curves



Affine spaceAffine space

� A is an affine space. We can chose a point p in A and a set of n vectors v
1
,...,v

n
 representing a 

bases of the vector space V. This any point q of A has a unique representation:

� Column of coordinates                                      represents the point q with respect to the affine 
frame p, v

1
, ..., v

n
. 

p

q

vv
2

v
1

q= p�v1 x1�...�vn xn

x=[ x1 ... xn ]
t
	�n



Affine combinationAffine combination

� Any point q can be written as :

� And thus as :  

� Exercise : 

� Show that : 

� Coefficients x
i
 are called barycentric coordinates of q with respect to the frame p

0
,...,p

n
.          

                 

q= p0�� p1� p0�x1�...�� pn� p0� xn

q= p0 x0�...� pn xn

x0�...�xn=1



Weighted sumWeighted sum

� Weighted sum of points : 

� q is a point if                      and q is a vector if                       . Otherwise, q is not defined

�  If the sum of weights is one :                      then                          is called an affine 
combination 

� Moreover, if all weights α
i
 are positive then it is a convex combination 

� The point q is in the convex hull of points p
i
 .

q=� pi�i

� �i=1 � �i=0

���i=1 � q=� pi�i

p
i q



Affine combinaison and parametric curves Affine combinaison and parametric curves 

� Exercise :

� 3 points p
0
,p

1
,p

2
 and a function p(u) of equation :

� Plot p(u) when the frame origin is p
0
, then when the origin is p

2
 . What can you observe ? Why is it 

like this ? Does this function define a curve ?

� Same questions with p(u) defined with the following equation :

� Show that the points of this second equation are in the convex hull of points p
i
.

p �u�=u
2
p0�u p1� p2 u	[0,1]

p
0

p
1

p
2

p �u�=�1�u �
2
p0�2u �1�u � p1�u

2
p2 u	[0,1]

p
0

p
1

p
2

p
0

p
1

p
2



Affine combinaison and parametric curves Affine combinaison and parametric curves 

with

� A point of the curve is an affine combination of the control points P
i

Thus, with respect to the control points, the relative curve shape and position remain invariant by affine 
transformations.  

p �u�=�
i=0

n

N i

d �u �P i u	[a ,b]

�
i=0

n

N i

d �u�=1 � u	[a ,b]
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Bézier curvesBézier curves



Bernstein polynomialBernstein polynomial

� Binomial expension :

This gives us the sum of n+1 polynomials of degree n called : Bernstein polynomials :

where

1=�u� �1�u � �
n
=�

i=0

n

�ni �ui �1�u �
n�i

Bi

n�u�=�ni �u i �1�u �
n�i

, i=0,... , n

�ni �= n !

i !�n�i� !



Plot of some Bernstein polynomialsPlot of some Bernstein polynomials

                                          n=1                                                                                  n=2

                                          n=3                                                                                n=6



PropertiesProperties

� Properties :

� At a fixed degree, they are linearly independent,

� They are symetric :

� They build a partition of unity :

� They are positive foa all u in [0,1] :

� They satisfy the recursive formula :

             with :                                   and 

                                                                            

                                                                       Can be easily shown using : 

Bi

n
�u�=Bn�i

n
�1�u�

�
i=0

n

Bi

n �u�=1 �u	�
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n
�u��0 � u	[0,1]
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n
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n
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i �=� n

i�1���ni �



Compute Bernstein polynomialsCompute Bernstein polynomials

� Triangular scheme :

� Exercise :

� Compute Bernstein polynomials of degree 3.

B0

0
B0

1
B0

2 � B0

n

B1

1
B1

2
� B1

n

B2

2 � B2

n

� �

Bn

n

1=
*

**
× (1-u)

× u

+



Bézier curvesBézier curves

� Bézier curves :

� Points P
i
 (i=0..n) are the n+1 control points of the curve,

� The curve is of order n+1 and its degree is n,

� The B
i
n areBernstein polynomials of degree n. They define the basis functions of the curve.

� The number of control points is directly linked to the curve degree : degree n ↔ n+1 control 

points.

� Exercise :

� A Bézier curve is controlled by the four points P
0
 (0,0), P

1
(5,5), P

2
(10,5), P

3
(15,0).

� Compute p(0), p(1/4), p(1/2), p(3/4), p(1) with repsect to the P
i
, then, compute the coordinates end plot the curve.

p �u�=�
i=0

n

Bi

n �u�P i , u	[0,1 ]



Examples of Bézier curvesExamples of Bézier curves
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n=6

Influence of the basis functionsInfluence of the basis functions

× P
0

× P
1

× P
2 × P

3
× P

4

× P
5

× P
6



Influence of the control pointsInfluence of the control points

� Exercise :

� A Bézier curve is controlled by P
0
 (0,0), P

1
(5,5), P

2
(10,5), P

3
(15,0).

Deduce from the value of the Bernstein polynomials the control points which the most influence the 
points on the curve for u=0, u=1/4, u=1/2, u=3/4, u=1.



PropertiesProperties

� Symmetry :

� Thus, the curve remains the same whatever the ordering of the control points (0 to n or n to 0).

� Let t ∈[a,b],     t = a (1-u) + b.u,     a≠b,  

then :

� The Bézier curve interpolates its first and last control points (u ∈[0,1]) :

� It is tangent to the first control and the last segment of its control polygon.

p �u�=�
i=0

n

Bi

n �u�P i=�
i=0

n

B i

n �1�u�Pn�i

p � t �u � �= p � t�=�
i=0

n

Bi

n�u�P i

p �0�=P0 p �1�=P n



Convex hullConvex hull

� The curve is included in the convex hull of its control polygon (because Bernstein polynomials are 

positive definite).
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Bounding boxBounding box

� The bounding box is obtained with the min and max of the coordinates of the control points. 
It is aligned with the frame axis.
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Derivative of a Bézier curveDerivative of a Bézier curve

� Derivative :

� Show that :

� Deduce that :

� Note that :

� Exercise :

� compute pu(0), pu(1/2), pu(1) with respect to points P
i
 for a Bézier curve of degree 3.

d

du
B i

n �u �=n � Bi�1

n�1 �u ��Bi

n�1 �u ��

dp

du
�u �= p

u�u�=n�
i=0

n�1

Bi

n�1�u �� P i , �P i=P i�1�P i

dp

dt
�t �= p

t
�t �=

n

b�a
�
i=0

n�1

Bi

n�1
�u��Pi , t	[a ,b] , u	[0,1]



HodographHodograph

� Tangent vectors are computed as a « Bézier composition » of degree n-1 controled by vectors V
i
 = n.∆P

i
 

= n.(P
i+1

-P
i
) ,  i=0..n-1     (u ∈ [0,1]).

� O is a point in space. The first hodograph of p(u) is the curve O + pu(u). The control polygon of this curve 
is defined by the points O + V

i



Examples of hodographsExamples of hodographs
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ExercisesExercises

� Exercise :

� Plot the first hodograph of Bézier curve controlled by P
0
 (0,0), P

1
(5,5), P

2
(10,5), P

3
(15,0)

� Exercise :

� Give the matrix form of a Bézier curve of degree 3 : 

p(u) = U . M . P ,  where U is the matrix of the power of u, M is a squared matrix and P is 
the matrix of control points.



De Casteljau algorithmDe Casteljau algorithm

� This algorithm relies on the following recursive formula ::

where

Example with n=3 and u=1/4 :

P
0

3 is the point p(1/4)

p �u�=�
i=0

n

Bi

n �u�P i

0=�
i=0

n�1

Bi

�n�1��u �P i

1=�=�
i=0

0
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0 �u �P i
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P i
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De Casteljau algorithmDe Casteljau algorithm

� Exercise :

� Draw the computation of points p(1/2) and p(3/4) using the De Casteljau algorithm
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De Casteljau algorithmDe Casteljau algorithm

� Tangent and osculating plan in a point of a Bézier curve :

� The tangent in P
0

3 = p(1/4) lies on the segment [P
0

2, P
1

2] 

� In général : [P
0
n-1, P

1
n-1]

� The osculating plan in P
0

3 is the plan (P
0

1, P
1
1, P

2
1)

� In général : (P
0
n-2, P

1
n-2, P

2
n-2)
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Split in two Bézier curvesSplit in two Bézier curves
� The De Casteljau algorithm allows to split a control polygon composed of n+1 points in two 

control polygons of n+1 points each ::
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Variational diminishing propertyVariational diminishing property

� A Bézier curve cannot have more intersection with a line than the maximum number of 
intersection between this line and the control polygon. 
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Not more than 2 
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Intersections of two curvesIntersections of two curves

� Intersections can be computed using the control polygons ::

� If the bounding boxes of the control polygons intersects, each control polygon is subdivided with 
u=1/2 and the De Casteljau algorithm. Test intersections on the new polygons and subdivisde if 
there is an intersection. Repeat until a chosen precision is reached. 

� Exercise :

� Apply this algorithm on the following examples :



Increase the degreeIncrease the degree

� A Bézier curve of degree n can always be represented with a Bézier curve of degree n+1. 

� The new control points Q
i
 (i=0..n+1) are computed as follows ::

Q i=
i

n�1
P i�1��1� i

n�1 �P i



Increase the degreeIncrease the degree

� Exercise :

� Apply the formula on the following example : 

� Check with the De Casteljau algorithm at u=(1/2) that p(1/2) is on the curve.



Modeling with Bézier curvesModeling with Bézier curves

� A unique Bézier curve of degree 12

� 6 Bézier curves of degree 3 (degree 2 at 
the end) joined with a C1 continuity



Join two curvesJoin two curves

� Exercise :

� p and q are two Bézier curves :: 

� p(u) of degree n, u ∈[0,1], control points P
i
 

� q(v) of degree m, v ∈[0,1], control points Q
j
 

� Give the join conditions in u=1 et v=0 in order to ensure the following continuities :

� une continuité C0

� une continuité G1

� une continuité C1

� une continuité C2



Strenghts and wiknesses Strenghts and wiknesses 

� Strenghts :

� Intuitive control by control points

� The curve is included in its convex hull

� Easy to implement

� Désavantages :

� Global support

� The degree depends on the number of control points


