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Regular octreeRegular octree
● An octree is a tree data structure in which each internal node has up to eight 

children. A regular octree recursively subdivides a cube in eight cubes of equal 
size. The leaves of an octree are called « voxels ».
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Adaptative octreeAdaptative octree
● In an adaptative octree, the nodes of the tree can have different lengths so as to 

sample space in an heterogeneous way.
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Example on a quadtreeExample on a quadtree
● A quadtree is a tree in which each node has 4 children. It is the 2D equivalent of an octree

– Draw the leaves of the adaptative quadtree representing the object below.

– Write the « tree form » of the quadtree (develop the first node only). 
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Surface representation using an octreeSurface representation using an octree

● Regular Octree : we subdivide until sufficient precision is attained and for each 
voxel:

 

– either the voxel does not intersect the surface: the corresponding leaf is empty (value 0), 

– or it does intersect the surface: the corresponding leaf is full(value1). 

● Adaptative octree: 

– either the node does not intersect the surface : it is an empty leaf, 

– or it does intersect the surface : if we have enough precision, it becomes a full leaf. Otherwise, it is 
going to get subdivided
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Volume representation using an octreeVolume representation using an octree

● Regular octree : we subdivide until sufficient precision is attained and for each 
voxel:

– either it is inside the object (value 1 for instance) 

– either it is outside the object (value -1 for instance),

– or it is on the boundary of the object (value 0).

● Adaptative octree : 

– either the node is on the boundary of the object : if we have sufficient precision it 
becomes a leaf (with value 0). Otherwise it gets subdivided.

– Or it is inside or outside the object: it becomes either an “inside leaf” or an “outside 
leaf”.
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Octree : +/-Octree : +/-

● Pros:

– Hierarchical representation of an objet : it can be displayed at different resolutions

– Possibility of a volume representation.

– Easy to test the intersection with another object.

– Simple construction and exploration (done recursively)

● Cons:

– Surface visualisation of voxels is problematic.

– Rendering can be costly for complex scenes.

– Expensive to store.
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B-Rep modelsB-Rep models
● Boundary-Representation

– A model is represented by its boundary

– No notion of volume

– Used to represent solids

–

–    

–

–Ordinary B-Rep                               Solid B-Rep
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Solid B-RepSolid B-Rep
● Inside / Outside test on an object :

– Even number of intersections : point P is outside the solid

– Odd number of intersections : point P is inside the solid

P P
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Brief historyBrief history
● 800 years Before Christ Era, Etruscans used to play games using regular dodecahedrons 

(12 faces).

• The pythagorians, 450 years BCE, already knew the cube and the 
tetrahedron. 

• 400 years BCE, Platon discovered the 5 regular polyhedra: the 
tetrahedron, the cube, the octahedron, the dodecahedron and the 
icosahedron (20 faces). 

– In platon's philosophy, each one was associated with an element (the Fire, 
the Earth, the Air, the Water and the Universe).
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Platonic solidsPlatonic solids

Regular polyhedron = 

– Convex polyhedron having a circumsphere, whose faces are identical

– All its faces are regular convex polygons  

– All its vertices have the same valency (same number of incident edges)
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MeshesMeshes
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MeshesMeshes
● Surfaces are represented by polygons. 

● Global continuity class is C0 (normals are discontinuous along the edges) .

● They define the geometry and the topology of a surface

• It is a standard structure used in the rendering of 3D 
scenes

• Their manipulation and visualization is optimised by 
today's graphic cards
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Topological properties of meshesTopological properties of meshes

● Duality

● Closed mesh and 2-manifold mesh

● Euler formula
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DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of  

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and points are 
replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face and connect 
two vertices with an edge  if the faces they represent in the primal mesh share an edge.
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DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of  

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and 
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face 
and connect two vertices with an edge  if the faces they represent in the primal 
mesh share an edge.

Faces are replaced by their center
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DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of  

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and 
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face 
and connect two vertices with an edge  if the faces they represent in the primal 
mesh share an edge.

Edges are “flipped”
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DualityDuality
● Dual mesh: each entity of dimension k in the primal mesh is replaced by an entity of  

dimension (2-k) in the dual mesh:

– Each face (dim 2) is replaced by a point (dim 0). Edges keep their dimension and 
points are replaced by faces.

– To compute the geometry of the dual mesh, we place a vertex at the center of each face 
and connect two vertices with an edge  if the faces they represent in the primal 
mesh share an edge.

Edges are “flipped”
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Duality: exampleDuality: example
● Draw the dual mesh of

the following mesh :

● What do you notice at the faces ?

● What about the dual mesh of the dual mesh ?
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Closed meshClosed mesh

A mesh is a closed mesh if it divides space into two sets of points:

A set inside the mesh

A set outside the mesh

In other words, a closed mesh does not have any border
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2-manifold2-manifold
● A closed mesh is 2-manifold (or manifold) if the object it represents is  

« manufacturable ».

● By definition, a mesh is 2-manifold if the condition below is satisfied:

– Local disc property: at each point of the mesh, we can find a sphere of radiusε>0 such that the 
intersection of that sphere and the mesh is homothetic to a circle.

● An open mesh can be 2-manifold. At the border, the intersection between the sphere and 
the mesh must be homothetic to a half-circle.
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Example : manifold / non-manifold ?Example : manifold / non-manifold ?

On triangular meshes:

● An edge shared by more than 2 triangles ?

● A vertex shared by two disjoint sets of triangles ?

● A T-junction (« crack » problem) ?

● A hole in the mesh?
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Euler formula (1752)Euler formula (1752)
● It is a relation between every entity of the mesh (faces, edges, vertices):

V - E + F = 2 (1-g)

Where V is the number of vertices, E is the number of edges and F is the number of 
faces. g is the genus of the object = the number of holes (handles) in a closed mesh.

genus 0 genus 1 genus 2
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Triangular meshesTriangular meshes

Specific properties from Euler's formula:

V – E + F = 2 (1-g) = c

where c is a constant usually neglectible in front of V, E or F. Thus we can write :

V - E + F = 0

It is difficult to establish a relationship between those entities because an edge is shared 
by two triangles. We can introduce the notion of an half-edge. A face is composed of 3 
half-edges and an edge is composed of 2 half-edges:

He = 3 F
He = 2 E

F = 2V

He = 6V
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Exemples: Euler's formulaExemples: Euler's formula
Compute the number of faces F from the number of vertices V, then the average number of 

outgoing Half-edges He for each vertex. Then deduce the shape of a regular mesh composed of :

– quads

– hexagons
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Data structures for meshesData structures for meshes

Choose a representation adapted to the operations we would like to 
perform on the mesh :

● Either a compact representation (save memory space)

● Or a representation optimized for mesh exploration
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Triangles listTriangles list
● For each triangle, we store the coordinates of its 3 vertices

– Naive approach

– 4 bytes per coordinate (a float)

– 9 coordoninates per face

– Number of faces is about twice the number of vertices

● For a mesh composed of V vertices, we thus need  
bytes.
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Shared verticesShared vertices
● First we store the vertices list

● Then a triangle is given by the indices of its 3 vertices

● Usually, the file storing the mesh begins with the number of vertices and 
the number 

Vertices list                       Triangles list
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             . . .                                                  . . .

How many bytes stored per vertex?  (36)



Modélisation Géométrique

Triangle stripsTriangle strips
● Topology is implicitely stored by the order the vertices appear in the file

● Each vertex is explored 2 times (one vertex belongs to 2 strips or 
appears twice in a strip)

● If the mesh is defined by a single strip, what is the memory space 
occupancy ?

Actually, a mesh is usually composed of many strips and an additionnal 
20 bytes is needed for each new strip (storage of the 2 first vertices) 
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Per face structurePer face structure

● Each face has pointers to its vertices and to adjacent faces

● Each vertex has a pointer to one of its faces

● No direct access to the edges

● Bytes per vertex? (64)
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Per half-edge structurePer half-edge structure

• Each edge is sliced into two half-edges of 
opposite directions

• For each half-edge, we store a pointer to the 
opposite half-edge, a pointer to the vertex it points to, a pointer to the face it 
belongs to, and a pointer to the next half-edge.

● Each vertex has a pointer to one of its outgoing half-edges. Each face has a 
pointer to one of its half-edges. 

● Very useful to explore a mesh in various ways

● Bytes per vertex ?   (120)
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Visualization of a mesh using OpenGLVisualization of a mesh using OpenGL
● Object construction : 

– The list of its vertices                     GLfloat vertices[] = {x0, y0, z0,

                                                                                                                                                                          …   

                                                                                                                                                                   xn, yn, zn};

– The list of its attributes (normals for instance)

                                                        GLfloat normals[] = {nx0, ny0, nz0,

                                                                                                                                                                          …

                                                                                                                                                                nxn, nyn, nzn};

– The list of its indices                        GLuint index[] = {0, 1, 2,

                                                                                     5, 0, 4,

                                                                                       . . .    };
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Visualization of a mesh using openGlVisualization of a mesh using openGl
● Different kinds of primitives:

● GL_TRIANGLES : the indices in the list are considered by groups of 3 
elements. Each triplet forms a triangle .

● GL_QUADS : the indices in the list are considered by groups of 4 
elements. Each group forms a quad.

● GL_TRIANGLE_STRIP : the indices in the list are considered in their 
given order so as to form a triangle strip. In the indices list, it is possible to 
use a special value to separate different strips,

● GL_QUAD_STRIP : same, but with quads instead of triangles,
● …
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OpenGL renderingOpenGL rendering
// Activating rendering  mode using vertex arrays

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_NORMAL_ARRAY);  // if we want to set the normal for each vertex

glEnableClientState (...);  //if we want to set other attributes of the vertices (color...)

// Setting pointers to the different arrays

glVertexPointer (3, GL_FLOAT, 0, sommets);

glNormalPointer (GL_FLOAT, 0, normales);  // if we use normals

// … + other possible arrays (color,…)

// Drawing triangles:

glDrawElements (GL_TRIANGLES, nb_index, GL_UNSIGNED_INT, index); 

//  Deactivating the rendering mode

glDisableClientState ( ………..);  
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Further optimisationFurther optimisation

● Vertex arrays are a simple way to visualize meshes in OpenGL.

● A most common and efficient way to visualize meshes is to use OpenGL's Vertex Buffer 
Objects (VBO). VBOs are vertex arrays stored in the memory of the GPU. Thus their access 
from the GPU is faster, hence a faster rendering.

● VBOs will be studied in a next lesson...
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Normal to a faceNormal to a face
● The normal to a face can be obtained by computing the cross product of two edges 

from that face

● When storing a mesh, one has to be careful about normals orientation. The vertices 
composing each face must be stored in the same order...

● Normals point to the outside of a closed object. They are needed when computing the 
lighting of the object.
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Normal at a vertexNormal at a vertex
● Naive approach: average the normals to the faces that contain the vertex.

● Advanced approach : the sum is ponderated

– For instance, we can set ai as the area of triangle i

● Either way, we obtain an approximation of the normal to the surface at the 
vertex

N s= ∑ ai×
N i

f

∥∑ ai×
N i

f∥

N s=∑
N i

f

∥ N i
f∥



Modélisation Géométrique

Tutorial: load a mesh from a fileTutorial: load a mesh from a file
● Write an algorithm to load a mesh from a file. The mesh is stored using the shared vertices 

technique.

– The first two values in the file are the number of vertices followed by the number of 
faces. The next values are the coordinates of the vertices then the list of the indices.

– The mesh must be loaded so that the data structures used can be used by OpenGL to 
display the mesh (Vertex Array). 

– We would like to compute the normals at each vertex so that the object can be correctly 
lightened
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