
1

Master of intelligent systemsMaster of intelligent systems

Image synthesisImage synthesis

__

Geometric transformationsGeometric transformations
__

Olivier GourmelOlivier Gourmel

2

The transformation process

• Analogy with photography

3

The transformation process

• Analogy with photography

4

Geometric transformations

• Usual frames
Object space

World space

Eye space

Normalized

Device

Coordinates

Screen Space

5

Geometric transformations

• Euclidean transformations (rigid)

– Preserve angle measure

– Preserve length measure

– Invertible

 Identity

 Rotations

Translations

Euclidean

transformations

6

Geometric transformations

• Similarity transformations
– Preserve angle measure

– Invertible (except scale to zero)

 Identity

 Rotations

Translations

Euclidean

transformations
Similarity

transformations

Uniform

scaling

7

Geometric transformations

• Linear transformations
– f(P+Q) = f(P) + f(Q) and f(a.P) = a.f(P)

Euclidean

transformations
Similarity

transformations

Uniform

scaling

Linear

transformations
Reflections, Scaling, Shear

 Identity

 Rotations

Translations

8

Geometric transformations

• Affine transformations

– Preserve parallel lines / planes

– Preserve straight lines

 Identity

 Rotations

Translations

Euclidean

transformations
Similarity

transformations

Uniform

scaling

Linear

transformations Reflections, Scaling, Shear
Affine

transformations

9

Geometric transformations

• Projections :
– Affine transformations

– Non invertible

10

Vector properties (reminder)

• Vector : position / direction in 3D space

• Operators

• Norm

• Dot product

• Cross product

11

2D geometric transformations

• Homothetic transformation (scaling):

• Matrix form:

with

12

2D geometric transformations

• Rotation

• Matrix form:

13

2D geometric transformation

• Translation

• Matrix form ? Not a linear transformation...

with

We cannot write p' = T. p as before.

14

Geometric transformations

• What we want :

– Unified notations

– Composition of matrices to represent composition of transformations

• Solution : homogeneous coordinates (here in 2D)

– (x, y, w) :� Point P = (x/w, y/w) from ℜ2 if w ≠ 0

 Vector V = (x, y) if w = 0

• Transformation Matrix : (in 2D 3x3, in 3D 4x4)

15

Geometric transformations

• Translation

• Matrix form in homogeneous coordinates:

with

16

Geometric transformations

• Translation in homogeneous coordinates:

17

Geometric transformations (in 3D)

• Translation

• Scaling

• Rotations around an axis of the frame:

18

3D geometric transformations

Rotation followed

by a translation along

the x axis

Translation along the

x axis followed by a

 rotation

Initial position

• successive transformations : matrix product

– Associative :

p0=(T0*(T1*T2))p =((T0*T1)*T2)p =(T0*T1*T2)p

– Caution !! Matrix product is not commutative (most of the time)

19

Projections

• Transformation from the world space to the image space

– 3D world space coordinates → 2D image space coordinates

• Camera space

– Point of view : position of the observer

– Viewing direction : the direction in which the observer is looking

– « Up » direction: defines the vertical direction of the camera

• Viewing volume (viewing frustum)

– Two kinds of projections

• Parallel projection

• Perspective projection

20

Projections

• Projection family
Projection

Perspective
projection

Lines of projection

intersect at a single

point (the eye)

Parallel projection
Lines of projection are

parallel

Oblique
projection

Lines of projection
are not orthogonal
to the projection

plane

Orthographic
projection

Lines of projection are
orthogonal to the
projection plane

21

Projection matrices

• Orthographic projection on plane (z = 0)

Projection matrix:

• Orthographic projection on plane (y = 0)

Projection matrix:

• Orthographic projection on plane (x = 0)

Projection matrix

22

Projection matrices

• Perspective projection on plane (z = d)
The eye is at the origin

d

x

y

z

z

y

23

Projection matrices

• Perspective projection on plane (z = d)
– In homogeneous coordinates:

24

Transformations in

• OpenGL transformation pipeline:

• Two main transformation matrices:

– GL_MODELVIEW

• Positions the viewing volume

• Positions models in the world

– Rotations, translations, scaling, etc.

– GL_PROJECTION

• Determines the shape of the viewing volume

– Orthogonal projection

– Perspective projection

25

Transformations in

• Setting the current transformation matrix (CTM):

– void glMatrixMode(GLenum matrix);

'matrix' is either GL_PROJECTION or GL_MODELVIEW

• Initializing the value of the current matrix:

– void glLoadIdentity();

sets the CTM to the identity matrix

• Translation:

– void glTranslatef(GLfloat x, Glfloat y, Glfloat z);

multiplies the CTM with a translation matrix

– (x, y, z): coordinates of the translation vector

26

Transformations in

• Rotation
– void glRotatef (GLfloat angle, Glfloat x, GLfloat y, Glfloat z);

multiplies the CTM with a rotation matrix

– The rotation is counterclockwise around vector v = (x,y,z)

• Scaling
– void glScalef (GLfloat scale_x, GLfloat scale_y, Glfloat scale_z);

multiplies the CTM with a scaling matrix

y

z

x

27

Tutorial : non-commutativity of the transformations

 Write a program that tests the non-commutativity of the
transformations.

 A global variable 'order' will be used to determine which of two
transformations (a rotation and a translation) will be applied first.

– Keyboard event function:
• void key (unsigned char c, int mouseX, int mouseY)

• Key <q> to quit

• Key <o> to switch the order of the transformations

– Display function:
• void display(void)

• glutSolidTeapot(int size); // draws a teapot centered at the origin, aligned
 on the x axis

28

Geometric transformations

• OpenGL defines two matrix stacks:

– One stack for the modelview matrices
One stack for the projection matrices

– void glPushMatrix(void)
push the CTM in the current stack

– void glPopMatrix(void)
restore the last state of the CTM
stored in the current stack

29

Projections & viewing frustum

• Orthographic projection:

– void glOrtho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat up, GLfloat
near, Glfloat far)
multiplies the CTM by an orthographic projection matrix

– The projection is done along the z axis

– By default: GL_PROJECTION = Id
Equivalent to an orthographic projection with parameters (-1, 1, -1, 1, -1, 1)

30

Projections & viewing frustum

• Perspective projection:

– void gluPerspective(GLfloat fovy, Glfloat aspect_ratio, GLfloat zNear, GLfloat zFar)
multiplies the CTM by a perspective projection matrix

– The projection is done along the z axis

– fovy = field of view (in degrees) in the y direction

– aspect_ratio = w/h determines the field of view in the x direction

near

far

h

w
fovy

�
θ

31

Projections & viewing frustum

• Perspective projection:

– Effects of changing the field of view:

– The narrower the fov, the closer to an Orthographic projection !

Far object, narrow fov Close object, wide fov

 

32

Geometric transformations

• Setting the point of view

– void gluLookAt(GLfloat eye_x, eye_y, eye_z,
 center_x, center_y, center_z,
 up_x, up_y, up_z);

multiplies the CTM by a viewing matrix

– (eye_x, eye_y, eye_z): position of the camera in the world

– (center_x, center_y, center_z): a point in the scene, aimed at by the camera
(defines the direction of the camera)

– (up_x, up_y, up_z): defines the verticality of the camera

33

Geometric transformations

• Setting the viewport

– void glViewport(GLuint x, GLuint y, GLuint width, GLuint height);

– Maps the image plane to an area of the window

Defines the area of the window in which the rendering will be done

Window

(x, y)

Viewport

34

Tutorial: viewing volume and viewport

 Draw a teapot of size 1 using the default viewing volume

– Explain the result with a figure

 Modify the viewing volume in order to see a well-proportionned teapot, then change it
again so that the teapot fits the screen

 Using glViewport

– What parameters should we give to glViewport so that the teapot is drawn in a
300*300 frame at the bottom left of the window? (3)

– Change the viewing volume so that the teapot is well proportionned again (4)

– Draw 2 teapots in 2 different viewports (5)

 Move the teapot by 100 along the z axis (6)

– Change the viewing volume in order to see the teapot again (7)

– Apply some modeling transformations to the teapot (8,9)

 Perspective

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

