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e A parametric curve can be seen as the trajectory of a point P moving in space. The parameter
is then the time t even though any parameter u can be used in practice.

P(t)

« Note that the point P(x,y,z) has the same coordinates as vector OP
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Deflnition

e A parametric curve in the R® space is defined by a function

f: R - R’

>
I

u)=f
u = Plu)={y(u)=f(
f

N <
[

* Thus, for each value of parameter u, we compute independently each of the three corrdinates
x,Yy, z of the point P(u)

* The same curve can have several different parametric equations (possibly an infinity).
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Example

e Parametric equations of a circle in R? :

P(m/2)
_ P(O
T Pk 0
P(3m/2)
f 2
x(u):riluz P)
u J—
R M )
| 1+u’ P(-c0)
P(-1)
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Pararnetric equation of a line

« Parametric equation of a line in R’ passing by two points P, et P, :

(

x(u)=(1—u)x,+ux,
P(u)iy(u)=(1-u)y,+uy,  u€R
z(u)=(1—u)z,+uz,

P(u)=(1—u)P,+uP,

\

* This equation leads to the notion of linear interpolation. Indeed, when u varies between O et 1,
the point P linearly covers the segment from P, to P,

P

2
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Pararnetric equation of a line

« Aline can also be defined with a point P, and a vector v :
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Differential geometry : parameters

 Random parameter : u € [a,b] curvilinear abscissa : s € [0,(].

— s is the lenght of curve from the origine to the point P(s):

u=a
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langent vector

e Unit tangent vector :

dp , . p(s+0s)—p(s)
T=—t= T=1
ds P a:To 0s
— Practical computation :
p(u)

p(u)=2L=T| p(u)| T=p'

du

p(u)
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Principal normal vector

e The tangent is known. How to define a orthogonal vector with a predictable orientation ?

BT

e EXxercise :

— Show that the derivative of a vector with constant norm is orthogonal to that vector :

wehave W u:v( _||v|| show that v (u)_Lv(u)

e The principal normal vector N is defined from the derivative of the unit tangent vector :

%
_dT _d°P N=—

dP

dP
r=dP ||T||—\

ds

ds
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net frame

(D~

.
=

It is a local frame in a point on a curve :

Once the vectors T, N and B evaluated at point a P, the Frénet frame is the frame
(T,N,B),centered in P.

(T,N) defines the osculating plane

(B,T) defines the tangent plane

(N,B) defines the normal plane
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Computation of tne Frénet fram

(D

e Unit tangent vector T and speed vector v :

v:d—p:p: dx,dy,dz T:L
du du du du | pl
e Unit binormal vector B and acceleration vector a :
2 ..
a= d ]23: . B= p/\p
du ||P/\ PH

e Principal normal vector :

N=BAT

e Vector N points in the direction of the center of curvature, thus, when passing an inflexion
point, the frame « flips ».
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Curvature

Q)

* By definition, the principal normal vector is :

T

2
d 12) — T = kN  where Kk is the curvature in p
ds® ds kN

k= 1 where p is the curvature radius

= T(s)
P T(s+0s)
00

Osculating circle
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Curvature :

Inflexion point => k=0

k=0 \§> inflexion point

=~ O
[
< 8

~ O
I
g O

Exercise

— Show that expressions (1) and (2) correspond.
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Torsion

° 1 . dB
Torsion vector : —t N

ds

e Torsion : it is defined from the variation of the binormal vector.

T:p{pT@
IpA B

» If the torsion is zero over the curve, the curve is planar.
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Affine combination of points
and
parametric curves
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Affine spac

« Adis an affine space. We can chose a point p in A and a set of n vectors v ,...,v_representing a
bases of the vector space V. This any point g of A has a unique representation:

q=p+v,x;t+..+v X,

t
€IR" represents the point q with respect to the affine

e Column of coordinates X = [ X X,
framep, v, .., V.

n
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Affine compination

* Any point q can be written as :

q=po+(p1— Po) X, + ...+ (P, — Do) X,
e And thus as :
q:p0X0+“'+ pnxn

e EXxercise :

—  Show that : X0+...+Xn:1

« Coefficients x. are called barycentric coordinates of q with respect to the frame p,,...,p. .
1 0 n
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Welghnted sum

e Weighted sum of points :

q:Z P&

- qis a point if Z (Xl:l and q is a vector if Z 0(1:0 . Otherwise, q is not defined

» If the sum of weights is one : (Z ;= 1) then q=2. p,«; is called an affine
combination

« Moreover, if all weights o are positive then it is a convex combination

— The point q is in the convex hull of points p. .
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Affine combinaison and pararetric curves

(e Exercise : b
— 3 points p,,p,,p, and a function p(u) of equation :
2
p(u)=u”po+up;+p, u€l0,1]
— Plot p(u) when the frame origin is p,, then when the origin is p, . What can you observe ? Why is it
like this ? Does this function define a curve ?
— Same questions with p(u) defined with the following equation :
p(u)=(1—uf py+2ull~u|p,+u°p,  u€[0,1]
— Show that the points of this second equation are in the convex hull of points p..
p]_ pl
@ @
P,
P, @ P,
po O ) po O )
P,
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Affine combinaison and pararetric curves

p(u)=2 Ni(u)P, u€la,b]

with

Z NY(u)=1 Y u€|a,b]

« Apoint of the curve is an affine combination of the control points P,

Thus, with respect to the control points, the relative curve shape and position remain invariant by affine
transformations.
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Bézier curves
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ernstein polynormial

* Binomial expension :

1=(u+(1—u))n= "

i=

—i

n

Cu1—ul

This gives us the sum of n+1 polynomials of degree n called : Bernstein polynomials :

i

u'll—ul"" , i=0,...,n
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Plot of some Bernstein polynormials
E Lirlupilor > n %) L;nupilor
ok n=1 ;. ool

iplot
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Properties

* Properties :

- At afixed degree, they are linearly independent,
— They are symetric : B?(u)z Bz_i(l—u)

n
— They build a partition of unity : Z B? ( U ) — YuelR
i=0
— They are positive foa all uin [0,1] : B:"( Ll)> 0 \/ uE[O,l]

— They satisfy the recursive formula :

B/ (u)=uB] (u)+(1-u) B (u)

1

with : BL:B” =0 and 38:1

n+1

[ Can be easily shown using :
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Compute Bernstein polynormials

e Triangular scheme :

1= B, B, B; ... B
B; B} ... B <u
B, ... B LA,
: x (1-u)
B,
e EXxercise :

— Compute Bernstein polynomials of degree 3.
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Bézier curves :

— Points P, (i=0..n) are the n+1 control points of the curve,

— The curve is of order n+1 and its degree is n,

— The B areBernstein polynomials of degree n. They define the basis functions of the curve.

The number of control points is directly linked to the curve degree : degree n <> n+1 control
points.

-

Exercise :
A Bézier curve is controlled by the four points P (0,0), P (5,5), P,(10,5), P,(15,0).

Compute p(0), p(1/4), p(1/2), p(3/4), p(1) with repsect to the P,, then, compute the coordinates end plot the curve.
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6'
L
=
—
<
(D
G

Gnuplot Oy

10 L} L} T L] L) L]

Points de controle o
Polygone de controle —
P P Courbe de Bezier

gk d sv 2

= |L

4L Gnuplot TpOp %

; 10 T T T T T T
Points de controle @
2k i

a- . Polygone de controle —
P5t- _. //—_QPG Courbe de Bezier

v
r.f
o} Ps P2
0 3 Ay
0
_2 L L 1 L 1 L
5 0 2 4 3 8 10 r
I

=2 0 2 4 & 8 10 12

i
3
¢
-t
|
1
g

VORTEX




Influence of the basis functions

Gnuplot VO
1

0.8 F

N

0.4 F

0.2 F
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Influence of the control points

* Exercise : A
— A Bézier curve is controlled by P, (0,0), P,(5,5), P,(10,5), P,(15,0).
Deduce from the value of the Bernstein polynomials the control points which the most influence the
points on the curve for u=0, u=1/4, u=1/2, u=3/4, u=1.
K %
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- Symmetry :

n n
— n — n
p(u)=2_ B/ (u)P,=2 B/(1-u)P,
=0 i=0
* Thus, the curve remains the same whatever the ordering of the control points (0 to n or n to 0).

- Lette[ab], t=a(l-u)+bu, a#b,

then : n

— The Bézier curve interpolates its first and last control points (u €[0,1]) :

p(0)=P, p(1)=P,

— It is tangent to the first control and the last segment of its control polygon.
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Conveyx null

— The curve is included in the convex hull of its control polygon (because Bernstein polynomials are
positive definite).
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sounding box

» The bounding box is obtained with the min and max of the coordinates of the control points.
It is aligned with the frame axis.

Gnuplot i =) 5

10 L] | | L | | L] L
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8 10 12




Derjvative o

1
Qo
Ud
(Dy
N,
(D
—_—
P,
-
—
<

( Derivative :
—  Show that: iB?(U)—n B:l_—ll(u)_B?—l(u))
du
\
Deduce that :
d n—1
d_p(u):pu<u):nz B/ '(u)AP, AP;=P; ,—P,
u i=0
Note that :
d_p ot n - n—1
dt(t)—p(t)—b_a;)Bl (w)AP, ,  t€la,b] , u€l01]
e EXxercise :

- compute p*(0), p*(1/2), p"(1) with respect to points P, for a Bézier curve of degree 3.
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Hodograpn

» Tangent vectors are computed as a « Bézier composition » of degree n-1 controled by vectors V, = n.AP,
=n.(P,-P), i=0.n-1 (ue [0,1]).

* O s a point in space. The first hodograph of p(u) is the curve O + p“(u). The control polygon of this curve
is defined by the points O +V,
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Examples of nodograpns
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Exercises

Exercise :

—  Plot the first hodograph of Bézier curve controlled by P, (0,0), P (5,5), P,(10,5), P.(15,0)

/

-

Exercise :

— Give the matrix form of a Bézier curve of degree 3 :

p(u)=U .M. P, where U is the matrix of the power of u, M is a squared matrix and P is
the matrix of control points.

J
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De Casteljau algoritnm

e This algorithm relies on the following recursive formula ::

n—1 0
ZB P’=> B" V(u)P/=...=) B'(u)P!=P;
i=0 ]

where
k+1

P'=(1—u) P +uP;

Example with n=3 and u=1/4 :
P is the point p(1/4)
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De Casteljau algorithm

e EXxercise :

— Draw the computation of points p(1/2) and p(3/4) using the De Casteljau algorithm
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e Tangent and osculating plan in a point of a Bézier curve : b o
0 P! ?
P, 1

— The tangent in P * = p(1/4) lies on the segment [P *, P °]

o In général : [P ™, P ™']

0 271

— The osculating plan in P * is the plan (P, P.,', P.")

o In général : (P ™% P "2 P ™?)

o 271 272
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Split in two Bézier curves

* The De Casteljau algorithm allows to split a control polygon composed of n+1 points in two
control polygons of n+1 points each ::

p<u)=§ B/ (u) P;

o o
0 u 1
n @ @ ®
n 4
p1(t0):Z B, (to)P? » € 3_’1] o Vv, 1/4 L 1
@ & ®
O u 10 u 1
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Variational diminisning property

e A Bézier curve cannot have more intersection with a line than the maximum number of
intersection between this line and the control polygon.

Not more than 2
intersections between the
curve and the line
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Intersections of two curves

» Intersections can be computed using the control polygons ::

— If the bounding boxes of the control polygons intersects, each control polygon is subdivided with
u=1/2 and the De Casteljau algorithm. Test intersections on the new polygons and subdivisde if
there is an intersection. Repeat until a chosen precision is reached.

/

e Exercise :

— Apply this algorithm on the following examples :
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Increase tne deqr

(D
(D

(-

» A Bézier curve of degree n can always be represented with a Bézier curve of degree n+1.

 The new control points Q. (i=0..n+1) are computed as follows ::

P. +|1-

Q=

n+1 n+1
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Exercise :

Apply the formula on the following example :

Check with the De Casteljau algorithm at u=(1/2) that p(1/2) is on the curve.
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Ead &
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Modeling with Bezier curves
X Gnuplot —Talx]
7 ' ' line 1
1 e ¢ A unique Bézier curve of degree 12
[
it
3t X Gnuplot BEEA
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Ji lim 5
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0 line 10 ——
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line 13
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* 6 Bézier curves of degree 3 (degree 2 at| ,|
the end) joined with a C' continuity
1}t
. .
Al 0 1 2 3 4 7 E 7 g
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Join two curves

e EXxercise :

— p and q are two Bézier curves ::
* p(u) of degree n, u €[0,1], control points P,
e q(v) of degree m, v €[0,1], control points Q
— Give the join conditions in u=1 et v=0 in order to ensure the following continuities :

e une continuité C°

e une continuité G!

e une continuité C!

e une continuité C?




Strenghnts and wiknesses

e Strenghts :

— Intuitive control by control points
— The curve is included in its convex hull

- Easy to implement

e Désavantages :

— Global support

— The degree depends on the number of control points
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