Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Curvature of a parametric curve

Analytical expression

Let s:RR3 be a vector valued function representing a parametric curve s(t) with tR the curve's parameter; the curvature of s is given by κ:RR as follows:

κ(t)=

Where '×' is the cross product, s'(t) speed (velocity) at t , s''(t) the acceleration, and \| \ \| the Euclidean norm of a vector.

2D version

The 2D cross product is not a vector like the 3D cross product but a real value \mathbb R. In addition, the norm of the 2D cross product is the value of the cross product itself: \| s' \times s'' \| = s_x' s''_y - s_y's_x'' . Finally the 2D cross product can be expressed as the determinant \left | \phantom{x} \right | of the 2D matrix below:

\kappa(t) = \frac{ \left | \begin{matrix} s_x'(t) & s_x''(t) \\ s_y'(t) & s_y''(t) \\ \end{matrix} \right | }{ \| s'(t) \|^3 }

Numerical computation

If you don't have the formula (i.e. analytical expression) of s(t), you can numerically compute it using finite differences:

s'(t) = \frac{ s(t+h)-s(t-h) } {2h} s''(t) = \frac{ s'(t+h)-s'(t-h) } {2h}

with h "small" (ex h < 0.0001 )

Shader code

Glsl code to visualize the curvature:
shadertoy.com/view/Mlf3zl


// Under MIT License
// Copyright © 2015 Inigo Quilez

// Computes the curvature of a parametric curve f(x) as 
// c(f) = | f' x f''| / |f'|^3
// More info here: https://en.wikipedia.org/wiki/Curvature


vec3 a, b, c, m, n; 

// parametric curve value s(t):
vec3 mapD0(float t){
    return 0.25 + a*cos(t+m)*(b+c*cos(t*7.0+n));
}

// curve derivative (velocity) s'(t)
vec3 mapD1(float t){
    return -7.0*a*c*cos(t+m)*sin(7.0*t+n) - a*sin(t+m)*(b+c*cos(7.0*t+n));
}

// curve second derivative (acceleration) s''(t)
vec3 mapD2(float t){
    return 14.0*a*c*sin(t+m)*sin(7.0*t+n) - a*cos(t+m)*(b+c*cos(7.0*t+n)) - 49.0*a*c*cos(t+m)*cos(7.0*t+n);
}

//----------------------------------------

float curvature( float t ){
    vec3 r1 = mapD1(t); // first derivative
    vec3 r2 = mapD2(t); // second derivative
    return length(cross(r1,r2)) / pow(length(r1),3.0);
}

float curvature_reciprocal( float t ){
    vec3 r1 = mapD1(t); // first derivative
    vec3 r2 = mapD2(t); // second derivative
    return pow(length(r1),3.0) / length(cross(r1,r2));
}

3d version: https://www.shadertoy.com/view/XlfXR4

Deriving the formula

A separate on article on how to interpret and derive the curvature formula where I do an in-depth explanation.

Related

No comments

(optional field, I won't disclose or spam but it's necessary to notify you if I respond to your comment)
All html tags except <b> and <i> will be removed from your comment. You can make links by just typing the url or mail-address.
Anti-spam question: