Skeletal animation, forward kinematic

Linear Blending Skinning (LBS) formula
\begin{equation*} \bar{\mathbf{p_i}} = \sum_{j=1}^{n} \ \ w_{ij} \ T_j \ \mathbf{p_i} \end{equation*}
- n number of bones
- w_{ij} scalar weight at the i^{\text{th}} vertex associated to the j^{\text{th}} bone
- T_j the 4x4 matrix, the global transformation of the j^{\text{th}} bone from its rest pose.
- \mathbf{p_i} mesh's vertex in rest pose
- \bar{\mathbf{p_i}} the vertex after deformation.
Vec3 linear_blending_skinning( const std::vector< std::map<int, float> >& skinning_weights, const std::vector<Mat4x4>& skinning_transfos, const std::vector<Point3>& in_vertex, const std::vector<Vec3>& in_normal, std::vector<Point3>& out_vertex, std::vector<Vec3>& out_normal) { for(int i = 0; i < skinning_weights.size(); ++i) // For each vertex { Mat4x4 blend_matrix = Mat4x4::null(); std::map<int, float> bones = skinning_weights[i]; for( std::pair<int, float> pair : bones) { // For each bone blend_matrix += skinning_transfos[ pair.first ] * pair.second; } out_normal[i] = blend_matrix.get_mat3x3().inverse().transpose() * in_normal[i]; out_vertex[i] = blend_matrix * in_vertex[i]; } }
Computing T_j (skinning transformation)
\begin{equation*} T_j = W_j \ (B_j)^{-1} \end{equation*}- W_j joint's world matrix in its current animated position.
- B_j joint's bind matrix in world coordinates, bind matrix is saved at rest position (a.k.a T-pose) of the skeleton. In short, it is the joint's current orientation when binding the mesh to the skeleton.
The global bind pose B_j is computed by multiplying the chain of local bind matrices. The global animated pose W_j is computed by multiplying the chain of local bind matrices interleaved with input user transformations:
\begin{equation*} \begin{split} W_j &= L_{\text{root}} \ \ \Ul_{\text{root}} \ \cdots \ L_{p(j)} \ \ \Ul_{p(j)} \ \ L_j \ \ \Ul_j \\ W_j &= W_{p(j)} \ \ L_j \ \ \Ul_j \\ B_j &= L_{\text{root}} \ \cdots \ L_{p(j)} \ \ L_j \\ B_j &= B_{p(j)} \ \ L_j \\ \end{split} \end{equation*}
- p(j) parent index of the j^\text{th} joint
- L_j local transformation (according to the parent joint) of the joint in rest pose.
- \Ul_j local transformation defined by the user.
Procedure to compute the global skinning transformation T_j by specifying a local transformation at each joint:
void compute_skinning_transformations(Mat4x4* tr) { rec_skinning_transfo(tr, g_skel.root(), Mat4x4::identity() ); } void rec_skinning_transfo(Mat4x4* transfos, int id, const Mat4x4& parent) { // W_j = W_p(j) * L_j * Ul_j Mat4x4 world_pos = parent * g_skel.bind_local(id) * g_user_local[id]; // T_j = W_j (B_j)^-1 transfos[id] = world_pos * g_skel.bind(id).inverse(); for(unsigned i = 0; i < g_skel.sons( id ).size(); i++) rec_skinning_transfo(transfos, g_skel.sons( id )[i], world_pos); }
If you don't have access to the local transformation of the joint \Ul_j you can compute T_j given the current world position of the joint:
for(int i = 0; i < bones.size(); ++i) { Mat4x4 tr = bone_world_transfo(i) * bind[i].inverse(); // T_j = W_j (B_j)^-1 skinning_transfo[i] = tr; }
Computing L_j (bind local matrix)
If only the world bind pose B_j is known you can find back the local bind pose L_j with:
\begin{equation*} L_j= (B_{p(j)})^{-1} \ B_j \end{equation*}Computing W_j (joint world matrix)
Given a joint in rest pose B_j you can find back its animated position just apply the current skinning transformation T_j:
\begin{equation*} W_j = T_j \ . \ B_j \end{equation*}Computing \Ul_j (user local transformation)
You can extract the user local transformation \Ul_j from the joints world matrix W :
\begin{equation*} \begin{split} W_j & = W_j \\ W_{p(j)} L_j \Ul_j & = W_j \\ L_j \Ul_j & = (W_{p(j)})^{-1} W_j \\ \Ul_j & = (L_j)^{-1} (W_{p(j)})^{-1} W_j \\ \Ul_j & = (W_{p(j)} L_j)^{-1} W_j \\ \end{split} \end{equation*}Set \Ul_j (user local transformation)
Say we seek to update the local user transformation \Ul_j. We could reset it to a new value \Ul'_j or apply an incremental transformation \Ul'_j = Incr_j \ \ \Ul_j .
But what if we only have access to U_j , an incremental user transformation in world space? With U_j we can directly transform an animated joint W_j to its new position W'_j :
\begin{equation*} \begin{split} W'_j & = U_j \ W_j \\ (L_{\text{root}} \ \ \Ul_{\text{root}} \ \cdots \ L_{p(j)} \ \ \Ul_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ W_j \\ (W_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ W_j \\ \end{split} \end{equation*}Since we seek the new local user transformation \Ul'_j lets isolate it:
\begin{equation*} \begin{split} (W_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ \ W_j\\ ( L_j \ \ \Ul'_j) & = (W_{p(j)})^{-1} \ \ U_j \ \ W_j \\ \Ul'_j & = (L_j)^{-1} \ \ (W_{p(j)})^{-1} \ \ U_j \ \ W_j \end{split} \end{equation*}Reference
Vertex skinning with GLSL
Smooth skinning tutorial
LBS with Quaternions
No comments