Skeletal animation, forward kinematic
Linear Blending Skinning (LBS) formula
$$ \begin{equation*}
\bar{\mathbf{p_i}} = \sum_{j=1}^{n} w_{ij} T_j \mathbf{p_i}
\end{equation*} $$
- \(n\) number of bones
- \(w_{ij}\) scalar weight at the i\(^{\text{th}}\) vertex associated to the j\(^{\text{th}}\) bone
- \(T_j\) the 4x4 matrix, the global transformation of the j\(^{\text{th}}\) bone from its rest pose.
- \(\mathbf{p_i}\) mesh's vertex in rest pose
- \(\bar{\mathbf{p_i}}\) the vertex after deformation.
Vec3 linear_blending_skinning( const std::vector< std::map<int, float> >& skinning_weights, const std::vector<Mat4x4>& skinning_transfos, const std::vector<Point3>& in_vertex, const std::vector<Vec3>& in_normal, std::vector<Point3>& out_vertex, std::vector<Vec3>& out_normal) { for(int i = 0; i < skinning_weights.size(); ++i) // For each vertex { Mat4x4 blend_matrix = Mat4x4::null(); std::map<int, float> bones = skinning_weights[i]; for( std::pair<int, float> pair : bones) { // For each bone blend_matrix += skinning_transfos[ pair.first ] * pair.second; } out_normal[i] = blend_matrix.get_mat3x3().inverse().transpose() * in_normal[i]; out_vertex[i] = blend_matrix * in_vertex[i]; } }
Computing \(T_j\) (skinning transformation)
$$ \begin{equation*}
T_j = W_j (B_j)^{-1}
\end{equation*} $$
- \(W_j \) joint's world matrix in its current animated position.
- \(B_j \) joint's bind matrix in world coordinates, bind matrix is saved at rest position / T-pose of the skeleton. In short, it is the joint's current orientation when binding the mesh to the skeleton.
The global bind pose \( B_j \) is computed by multiplying the chain of local bind matrices. The global animated pose \(W_j\) is computed by multiplying the chain of local bind matrices interleaved with input user transformations:
$$ \begin{equation*} \begin{split} W_j &= L_{\text{root}} Ul_{\text{root}} \ \cdots \ L_{p(j)} Ul_{p(j)} \ L_j Ul_j \\ W_j &= W_{p(j)} L_j Ul_j \\ B_j &= L_{\text{root}} \ \cdots L_{p(j)} \ L_j \\ B_j &= B_{p(j)} L_j \\ \end{split} \end{equation*} $$
- \( p(j) \) parent index of the \(j^\text{th}\) joint
- \( L_j \) local transformation (according to the parent joint) of the joint in rest pose.
- \( Ul_j \) local transformation defined by the user.
Procedure to compute the global skinning transformation \(T_j\) by specifying a local transformation at each joint:
void compute_skinning_transformations(Mat4x4* tr) { rec_skinning_transfo(tr, g_skel.root(), Mat4x4::identity() ); } void rec_skinning_transfo(Mat4x4* transfos, int id, const Mat4x4& parent) { // W_j = W_p(j) * L_j * Ul_j Mat4x4 world_pos = parent * g_skel.bind_local(id) * g_user_local[id]; // T_j = W_j (B_j)^-1 transfos[id] = world_pos * g_skel.bind(id).inverse(); for(unsigned i = 0; i < g_skel.sons( id ).size(); i++) rec_skinning_transfo(transfos, g_skel.sons( id )[i], world_pos); }
If you don't have access to the local transformation of the joint \( Ul_j \) you can compute \(T_j\) given the current world position of the joint:
for(int i = 0; i < bones.size(); ++i) { Mat4x4 tr = bone_world_transfo(i) * bind[i].inverse(); // T_j = W_j (B_j)^-1 skinning_transfo[i] = tr; }
Computing \(L_j\) (bind local matrix)
If only the world bind pose \( B_j \) is known you can find back the local bind pose \( L_j \) with:
$$ \begin{equation*}
L_j = (B_{p(j)})^{-1} B_j
\end{equation*} $$
Computing \(W_j\) (joint world matrix)
Given a joint in rest pose \( B_j \) you can find back its animated position just apply the current skinning transformation \( T_j\):
$$ \begin{equation*} W_j = T_j \ . \ B_j \end{equation*}$$
Computing \( Ul_j \) (user local transformation)
You can extract the user local transformation \( Ul_j \) from the joints world matrix \( W \):
$$
\begin{equation*} \begin{split}
W_j & = W_j \\
W_{p(j)} L_j Ul_j & = W_j \\
L_j Ul_j & = (W_{p(j)})^{-1} W_j \\
Ul_j & = (L_j)^{-1} (W_{p(j)})^{-1} W_j \\
Ul_j & = (W_{p(j)} L_j)^{-1} W_j \\
\end{split} \end{equation*}
$$
Set \( Ul_j \) (user local transformation)
Say we seek to update the local user transformation \(Ul_j\). We could reset it to a new value \(Ul'_j\) or apply an incremental transformation \( Ul'_j = Incr_j \ \ Ul_j \).
But what if we only have access to \( U_j \), an incremental user transformation in world space? With \( U_j \) we can directly transform an animated joint \( W_j \) to its new position \( W'_j \):
$$ \begin{equation*}
\begin{split}
W'_j & = U_j W_j \\
(L_{\text{root}} Ul_{\text{root}} \ \cdots \ L_{p(j)} Ul_{p(j)} L_j Ul'_j) & = U_j W_j \\
(W_{p(j)} L_j Ul'_j) & = U_j W_j \\
\end{split}
\end{equation*}$$
Since we seek the new local user transformation \( Ul'_j \) lets isolate it:
$$ \begin{equation*}
\begin{split}
(W_{p(j)} L_j Ul'_j) & = U_j W_j\\
( L_j Ul'_j) & = (W_{p(j)})^{-1} U_j W_j \\
Ul'_j & = (L_j)^{-1} (W_{p(j)})^{-1} U_j W_j
\end{split}
\end{equation*}$$
Reference
Vertex skinning with GLSL
Smooth skinning tutorial
LBS with Quaternions
No comments